X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=CreaPhase.git;a=blobdiff_plain;f=octave_packages%2Ftsa-4.2.4%2Flattice.m;fp=octave_packages%2Ftsa-4.2.4%2Flattice.m;h=b74d653903ab14e02da9e6cae068d0591011b1c1;hp=0000000000000000000000000000000000000000;hb=c880e8788dfc484bf23ce13fa2787f2c6bca4863;hpb=1705066eceaaea976f010f669ce8e972f3734b05 diff --git a/octave_packages/tsa-4.2.4/lattice.m b/octave_packages/tsa-4.2.4/lattice.m new file mode 100644 index 0000000..b74d653 --- /dev/null +++ b/octave_packages/tsa-4.2.4/lattice.m @@ -0,0 +1,127 @@ + function [MX,PE,arg3] = lattice(Y,lc,Mode); +% Estimates AR(p) model parameter with lattice algorithm (Burg 1968) +% for multiple channels. +% If you have the NaN-tools, LATTICE.M can handle missing values (NaN), +% +% [...] = lattice(y [,Pmax [,Mode]]); +% +% [AR,RC,PE] = lattice(...); +% [MX,PE] = lattice(...); +% +% INPUT: +% y signal (one per row), can contain missing values (encoded as NaN) +% Pmax max. model order (default size(y,2)-1)) +% Mode 'BURG' (default) Burg algorithm +% 'GEOL' geometric lattice +% +% OUTPUT +% AR autoregressive model parameter +% RC reflection coefficients (= -PARCOR coefficients) +% PE remaining error variance +% MX transformation matrix between ARP and RC (Attention: needs O(p^2) memory) +% AR(:,K) = MX(:, K*(K-1)/2+(1:K)); = MX(:,sum(1:K-1)+(1:K)); +% RC(:,K) = MX(:,cumsum(1:K)); = MX(:,(1:K).*(2:K+1)/2); +% +% All input and output parameters are organized in rows, one row +% corresponds to the parameters of one channel +% +% see also ACOVF ACORF AR2RC RC2AR DURLEV SUMSKIPNAN +% +% REFERENCE(S): +% J.P. Burg, "Maximum Entropy Spectral Analysis" Proc. 37th Meeting of the Society of Exp. Geophysiscists, Oklahoma City, OK 1967 +% J.P. Burg, "Maximum Entropy Spectral Analysis" PhD-thesis, Dept. of Geophysics, Stanford University, Stanford, CA. 1975. +% P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991. +% S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996. +% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. +% W.S. Wei "Time Series Analysis" Addison Wesley, 1990. + +% $Id: lattice.m 7687 2010-09-08 18:39:23Z schloegl $ +% Copyright (C) 1996-2002,2008,2010 by Alois Schloegl +% This is part of the TSA-toolbox. See also +% http://biosig-consulting.com/matlab/tsa/ +% +% This program is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% This program is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with this program. If not, see . + + +if nargin<3, Mode='BURG'; +else Mode=upper(Mode(1:4));end; +BURG=~strcmp(Mode,'GEOL'); + +% Inititialization +[lr,N]=size(Y); +if nargin<2, lc=N-1; end; +F=Y; +B=Y; +[DEN,nn] = sumskipnan((Y.*Y),2); +PE = [DEN./nn,zeros(lr,lc)]; + +if nargout<3 % needs O(p^2) memory + MX = zeros(lr,lc*(lc+1)/2); + idx= 0; + + % Durbin-Levinson Algorithm + for K=1:lc, + [TMP,nn] = sumskipnan(F(:,K+1:N).*B(:,1:N-K),2); + MX(:,idx+K) = TMP./DEN; %Burg + if K>1, %for compatibility with OCTAVE 2.0.13 + MX(:,idx+(1:K-1))=MX(:,(K-2)*(K-1)/2+(1:K-1))-MX(:,(idx+K)*ones(K-1,1)).*MX(:,(K-2)*(K-1)/2+(K-1:-1:1)); + end; + + tmp = F(:,K+1:N) - MX(:,(idx+K)*ones(1,N-K)).*B(:,1:N-K); + B(:,1:N-K) = B(:,1:N-K) - MX(:,(idx+K)*ones(1,N-K)).*F(:,K+1:N); + F(:,K+1:N) = tmp; + + [PE(:,K+1),nn] = sumskipnan([F(:,K+1:N).^2,B(:,1:N-K).^2],2); + if ~BURG, + [f,nf] = sumskipnan(F(:,K+1:N).^2,2); + [b,nb] = sumskipnan(B(:,1:N-K).^2,2); + DEN = sqrt(b.*f); + else + DEN = PE(:,K+1); + end; + idx=idx+K; + PE(:,K+1) = PE(:,K+1)./nn; % estimate of covariance + end; +else % needs O(p) memory + arp=zeros(lr,lc-1); + rc=zeros(lr,lc-1); + % Durbin-Levinson Algorithm + for K=1:lc, + [TMP,nn] = sumskipnan(F(:,K+1:N).*B(:,1:N-K),2); + arp(:,K) = TMP./DEN; %Burg + rc(:,K) = arp(:,K); + if K>1, % for compatibility with OCTAVE 2.0.13 + arp(:,1:K-1) = arp(:,1:K-1) - arp(:,K*ones(K-1,1)).*arp(:,K-1:-1:1); + end; + + tmp = F(:,K+1:N) - rc(:,K*ones(1,N-K)).*B(:,1:N-K); + B(:,1:N-K) = B(:,1:N-K) - rc(:,K*ones(1,N-K)).*F(:,K+1:N); + F(:,K+1:N) = tmp; + + [PE(:,K+1),nn] = sumskipnan([F(:,K+1:N).^2,B(:,1:N-K).^2],2); + if ~BURG, + [f,nf] = sumskipnan(F(:,K+1:N).^2,2); + [b,nb] = sumskipnan(B(:,1:N-K).^2,2); + DEN = sqrt(b.*f); + else + DEN = PE(:,K+1); + end; + PE(:,K+1) = PE(:,K+1)./nn; % estimate of covariance + end; +% assign output arguments + arg3=PE; + PE=rc; + MX=arp; +end; %if +