From: Frederic Cervenansky Date: Mon, 7 Jun 2010 15:40:29 +0000 (+0000) Subject: Add sqlite files with cmakefile if future compilation is mandatory X-Git-Tag: CREATOOLS.2-0-3~12 X-Git-Url: https://git.creatis.insa-lyon.fr/pubgit/?p=creaImageIO.git;a=commitdiff_plain;h=eb28ece612248f85890c32e1861703bffd506d06 Add sqlite files with cmakefile if future compilation is mandatory --- diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 0dce35f..0f76b43 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -120,10 +120,7 @@ SET( PRIMITIVE_SRCS ${SOURCES_CREAIMAGEIO_TREE} ) -IF(MSVC AND CMAKE_SIZEOF_VOID_P MATCHES 8) -message("charlie ${CMAKE_SYSTEM_PROCESSOR}") -endif() #if ( ${CMAKE_EXE_LINKER_FLAGS} MATCHES "message:x64")message("charlie ${CMAKE_SYSTEM_PROCESSOR}")endif() if( BUILD_CREA_PACS) diff --git a/src/creaImageIOGimmickView.cpp b/src/creaImageIOGimmickView.cpp index 2fbc258..93d286b 100644 --- a/src/creaImageIOGimmickView.cpp +++ b/src/creaImageIOGimmickView.cpp @@ -417,7 +417,7 @@ void GimmickView::ReadImagesNotThreaded(std::vector& s, std::vect vtkImageData* first = mReader.GetImage( i_file); int dim[3]; first->GetDimensions(dim); - if (dim[3] > 1) + if (dim[2] > 1) { bres = false; } diff --git a/win64/sqlite/CMakeLists.txt b/win64/sqlite/CMakeLists.txt new file mode 100644 index 0000000..2aa17fa --- /dev/null +++ b/win64/sqlite/CMakeLists.txt @@ -0,0 +1,29 @@ +cmake_minimum_required ( VERSION 2.6 FATAL_ERROR ) + +project ( sqlite3 C ) + +SET( CMAKE_INSTALL_PREFIX "" ) + +set ( SOURCES sqlite3.c ) +set ( HEADERS sqlite3.h ) + +if ( WIN32 ) + if ( MSVC ) +# set ( CMAKE_SHARED_LINKER_FLAGS /DEF:sqlite3.def ) +# set ( SQLITE3_DEF_FILE "${CMAKE_CURRENT_BINARY_DIR}/sqlite3.def" ) + add_definitions( "-DSQLITE_API=__declspec(dllexport)" ) + endif ( MSVC ) +endif ( WIN32 ) + +add_library ( sqlite3 SHARED + ${SOURCES} + ${HEADERS} +) + +INSTALL ( TARGETS sqlite3 + RUNTIME DESTINATION bin + LIBRARY DESTINATION lib + ARCHIVE DESTINATION lib +) + +INSTALL ( FILES sqlite3.h DESTINATION include ) diff --git a/win64/sqlite/Readme.txt b/win64/sqlite/Readme.txt new file mode 100644 index 0000000..82ed146 --- /dev/null +++ b/win64/sqlite/Readme.txt @@ -0,0 +1,18 @@ +//////////////////////////////////////////// +// README // +//////////////////////////////////////////// + +If you need to rebuild sqlite library (.lib and .dll), +Use the associated CMakeLists file to generate a sqlite project with the right compilator (x64 or x86). +Check on SQLITE website if a new version of sqlite is not avaialble. +http://www.sqlite.org/download.html + +!!! IMPORTANT : you just need to download amalgation package and replace files : +shell.c +sqlite3.c +sqlite.h +sqlite3ext.h +sqlite3.def + +(last version 3.6.23.1) + diff --git a/win64/sqlite/shell.c b/win64/sqlite/shell.c new file mode 100644 index 0000000..a1c0b5e --- /dev/null +++ b/win64/sqlite/shell.c @@ -0,0 +1,2635 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement the "sqlite" command line +** utility for accessing SQLite databases. +*/ +#if defined(_WIN32) || defined(WIN32) +/* This needs to come before any includes for MSVC compiler */ +#define _CRT_SECURE_NO_WARNINGS +#endif + +#include +#include +#include +#include +#include "sqlite3.h" +#include +#include + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) +# include +# if !defined(__RTP__) && !defined(_WRS_KERNEL) +# include +# endif +# include +# include +#endif + +#ifdef __OS2__ +# include +#endif + +#if defined(HAVE_READLINE) && HAVE_READLINE==1 +# include +# include +#else +# define readline(p) local_getline(p,stdin) +# define add_history(X) +# define read_history(X) +# define write_history(X) +# define stifle_history(X) +#endif + +#if defined(_WIN32) || defined(WIN32) +# include +#define isatty(h) _isatty(h) +#define access(f,m) _access((f),(m)) +#else +/* Make sure isatty() has a prototype. +*/ +extern int isatty(); +#endif + +#if defined(_WIN32_WCE) +/* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty() + * thus we always assume that we have a console. That can be + * overridden with the -batch command line option. + */ +#define isatty(x) 1 +#endif + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(__RTP__) && !defined(_WRS_KERNEL) +#include +#include + +/* Saved resource information for the beginning of an operation */ +static struct rusage sBegin; + +/* True if the timer is enabled */ +static int enableTimer = 0; + +/* +** Begin timing an operation +*/ +static void beginTimer(void){ + if( enableTimer ){ + getrusage(RUSAGE_SELF, &sBegin); + } +} + +/* Return the difference of two time_structs in seconds */ +static double timeDiff(struct timeval *pStart, struct timeval *pEnd){ + return (pEnd->tv_usec - pStart->tv_usec)*0.000001 + + (double)(pEnd->tv_sec - pStart->tv_sec); +} + +/* +** Print the timing results. +*/ +static void endTimer(void){ + if( enableTimer ){ + struct rusage sEnd; + getrusage(RUSAGE_SELF, &sEnd); + printf("CPU Time: user %f sys %f\n", + timeDiff(&sBegin.ru_utime, &sEnd.ru_utime), + timeDiff(&sBegin.ru_stime, &sEnd.ru_stime)); + } +} + +#define BEGIN_TIMER beginTimer() +#define END_TIMER endTimer() +#define HAS_TIMER 1 + +#elif (defined(_WIN32) || defined(WIN32)) + +#include + +/* Saved resource information for the beginning of an operation */ +static HANDLE hProcess; +static FILETIME ftKernelBegin; +static FILETIME ftUserBegin; +typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME, LPFILETIME, LPFILETIME); +static GETPROCTIMES getProcessTimesAddr = NULL; + +/* True if the timer is enabled */ +static int enableTimer = 0; + +/* +** Check to see if we have timer support. Return 1 if necessary +** support found (or found previously). +*/ +static int hasTimer(void){ + if( getProcessTimesAddr ){ + return 1; + } else { + /* GetProcessTimes() isn't supported in WIN95 and some other Windows versions. + ** See if the version we are running on has it, and if it does, save off + ** a pointer to it and the current process handle. + */ + hProcess = GetCurrentProcess(); + if( hProcess ){ + HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll")); + if( NULL != hinstLib ){ + getProcessTimesAddr = (GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes"); + if( NULL != getProcessTimesAddr ){ + return 1; + } + FreeLibrary(hinstLib); + } + } + } + return 0; +} + +/* +** Begin timing an operation +*/ +static void beginTimer(void){ + if( enableTimer && getProcessTimesAddr ){ + FILETIME ftCreation, ftExit; + getProcessTimesAddr(hProcess, &ftCreation, &ftExit, &ftKernelBegin, &ftUserBegin); + } +} + +/* Return the difference of two FILETIME structs in seconds */ +static double timeDiff(FILETIME *pStart, FILETIME *pEnd){ + sqlite_int64 i64Start = *((sqlite_int64 *) pStart); + sqlite_int64 i64End = *((sqlite_int64 *) pEnd); + return (double) ((i64End - i64Start) / 10000000.0); +} + +/* +** Print the timing results. +*/ +static void endTimer(void){ + if( enableTimer && getProcessTimesAddr){ + FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd; + getProcessTimesAddr(hProcess, &ftCreation, &ftExit, &ftKernelEnd, &ftUserEnd); + printf("CPU Time: user %f sys %f\n", + timeDiff(&ftUserBegin, &ftUserEnd), + timeDiff(&ftKernelBegin, &ftKernelEnd)); + } +} + +#define BEGIN_TIMER beginTimer() +#define END_TIMER endTimer() +#define HAS_TIMER hasTimer() + +#else +#define BEGIN_TIMER +#define END_TIMER +#define HAS_TIMER 0 +#endif + +/* +** Used to prevent warnings about unused parameters +*/ +#define UNUSED_PARAMETER(x) (void)(x) + +/* +** If the following flag is set, then command execution stops +** at an error if we are not interactive. +*/ +static int bail_on_error = 0; + +/* +** Threat stdin as an interactive input if the following variable +** is true. Otherwise, assume stdin is connected to a file or pipe. +*/ +static int stdin_is_interactive = 1; + +/* +** The following is the open SQLite database. We make a pointer +** to this database a static variable so that it can be accessed +** by the SIGINT handler to interrupt database processing. +*/ +static sqlite3 *db = 0; + +/* +** True if an interrupt (Control-C) has been received. +*/ +static volatile int seenInterrupt = 0; + +/* +** This is the name of our program. It is set in main(), used +** in a number of other places, mostly for error messages. +*/ +static char *Argv0; + +/* +** Prompt strings. Initialized in main. Settable with +** .prompt main continue +*/ +static char mainPrompt[20]; /* First line prompt. default: "sqlite> "*/ +static char continuePrompt[20]; /* Continuation prompt. default: " ...> " */ + +/* +** Write I/O traces to the following stream. +*/ +#ifdef SQLITE_ENABLE_IOTRACE +static FILE *iotrace = 0; +#endif + +/* +** This routine works like printf in that its first argument is a +** format string and subsequent arguments are values to be substituted +** in place of % fields. The result of formatting this string +** is written to iotrace. +*/ +#ifdef SQLITE_ENABLE_IOTRACE +static void iotracePrintf(const char *zFormat, ...){ + va_list ap; + char *z; + if( iotrace==0 ) return; + va_start(ap, zFormat); + z = sqlite3_vmprintf(zFormat, ap); + va_end(ap); + fprintf(iotrace, "%s", z); + sqlite3_free(z); +} +#endif + + +/* +** Determines if a string is a number of not. +*/ +static int isNumber(const char *z, int *realnum){ + if( *z=='-' || *z=='+' ) z++; + if( !isdigit(*z) ){ + return 0; + } + z++; + if( realnum ) *realnum = 0; + while( isdigit(*z) ){ z++; } + if( *z=='.' ){ + z++; + if( !isdigit(*z) ) return 0; + while( isdigit(*z) ){ z++; } + if( realnum ) *realnum = 1; + } + if( *z=='e' || *z=='E' ){ + z++; + if( *z=='+' || *z=='-' ) z++; + if( !isdigit(*z) ) return 0; + while( isdigit(*z) ){ z++; } + if( realnum ) *realnum = 1; + } + return *z==0; +} + +/* +** A global char* and an SQL function to access its current value +** from within an SQL statement. This program used to use the +** sqlite_exec_printf() API to substitue a string into an SQL statement. +** The correct way to do this with sqlite3 is to use the bind API, but +** since the shell is built around the callback paradigm it would be a lot +** of work. Instead just use this hack, which is quite harmless. +*/ +static const char *zShellStatic = 0; +static void shellstaticFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + assert( 0==argc ); + assert( zShellStatic ); + UNUSED_PARAMETER(argc); + UNUSED_PARAMETER(argv); + sqlite3_result_text(context, zShellStatic, -1, SQLITE_STATIC); +} + + +/* +** This routine reads a line of text from FILE in, stores +** the text in memory obtained from malloc() and returns a pointer +** to the text. NULL is returned at end of file, or if malloc() +** fails. +** +** The interface is like "readline" but no command-line editing +** is done. +*/ +static char *local_getline(char *zPrompt, FILE *in){ + char *zLine; + int nLine; + int n; + int eol; + + if( zPrompt && *zPrompt ){ + printf("%s",zPrompt); + fflush(stdout); + } + nLine = 100; + zLine = malloc( nLine ); + if( zLine==0 ) return 0; + n = 0; + eol = 0; + while( !eol ){ + if( n+100>nLine ){ + nLine = nLine*2 + 100; + zLine = realloc(zLine, nLine); + if( zLine==0 ) return 0; + } + if( fgets(&zLine[n], nLine - n, in)==0 ){ + if( n==0 ){ + free(zLine); + return 0; + } + zLine[n] = 0; + eol = 1; + break; + } + while( zLine[n] ){ n++; } + if( n>0 && zLine[n-1]=='\n' ){ + n--; + if( n>0 && zLine[n-1]=='\r' ) n--; + zLine[n] = 0; + eol = 1; + } + } + zLine = realloc( zLine, n+1 ); + return zLine; +} + +/* +** Retrieve a single line of input text. +** +** zPrior is a string of prior text retrieved. If not the empty +** string, then issue a continuation prompt. +*/ +static char *one_input_line(const char *zPrior, FILE *in){ + char *zPrompt; + char *zResult; + if( in!=0 ){ + return local_getline(0, in); + } + if( zPrior && zPrior[0] ){ + zPrompt = continuePrompt; + }else{ + zPrompt = mainPrompt; + } + zResult = readline(zPrompt); +#if defined(HAVE_READLINE) && HAVE_READLINE==1 + if( zResult && *zResult ) add_history(zResult); +#endif + return zResult; +} + +struct previous_mode_data { + int valid; /* Is there legit data in here? */ + int mode; + int showHeader; + int colWidth[100]; +}; + +/* +** An pointer to an instance of this structure is passed from +** the main program to the callback. This is used to communicate +** state and mode information. +*/ +struct callback_data { + sqlite3 *db; /* The database */ + int echoOn; /* True to echo input commands */ + int cnt; /* Number of records displayed so far */ + FILE *out; /* Write results here */ + int mode; /* An output mode setting */ + int writableSchema; /* True if PRAGMA writable_schema=ON */ + int showHeader; /* True to show column names in List or Column mode */ + char *zDestTable; /* Name of destination table when MODE_Insert */ + char separator[20]; /* Separator character for MODE_List */ + int colWidth[100]; /* Requested width of each column when in column mode*/ + int actualWidth[100]; /* Actual width of each column */ + char nullvalue[20]; /* The text to print when a NULL comes back from + ** the database */ + struct previous_mode_data explainPrev; + /* Holds the mode information just before + ** .explain ON */ + char outfile[FILENAME_MAX]; /* Filename for *out */ + const char *zDbFilename; /* name of the database file */ + sqlite3_stmt *pStmt; /* Current statement if any. */ + FILE *pLog; /* Write log output here */ +}; + +/* +** These are the allowed modes. +*/ +#define MODE_Line 0 /* One column per line. Blank line between records */ +#define MODE_Column 1 /* One record per line in neat columns */ +#define MODE_List 2 /* One record per line with a separator */ +#define MODE_Semi 3 /* Same as MODE_List but append ";" to each line */ +#define MODE_Html 4 /* Generate an XHTML table */ +#define MODE_Insert 5 /* Generate SQL "insert" statements */ +#define MODE_Tcl 6 /* Generate ANSI-C or TCL quoted elements */ +#define MODE_Csv 7 /* Quote strings, numbers are plain */ +#define MODE_Explain 8 /* Like MODE_Column, but do not truncate data */ + +static const char *modeDescr[] = { + "line", + "column", + "list", + "semi", + "html", + "insert", + "tcl", + "csv", + "explain", +}; + +/* +** Number of elements in an array +*/ +#define ArraySize(X) (int)(sizeof(X)/sizeof(X[0])) + +/* +** Compute a string length that is limited to what can be stored in +** lower 30 bits of a 32-bit signed integer. +*/ +static int strlen30(const char *z){ + const char *z2 = z; + while( *z2 ){ z2++; } + return 0x3fffffff & (int)(z2 - z); +} + +/* +** A callback for the sqlite3_log() interface. +*/ +static void shellLog(void *pArg, int iErrCode, const char *zMsg){ + struct callback_data *p = (struct callback_data*)pArg; + if( p->pLog==0 ) return; + fprintf(p->pLog, "(%d) %s\n", iErrCode, zMsg); + fflush(p->pLog); +} + +/* +** Output the given string as a hex-encoded blob (eg. X'1234' ) +*/ +static void output_hex_blob(FILE *out, const void *pBlob, int nBlob){ + int i; + char *zBlob = (char *)pBlob; + fprintf(out,"X'"); + for(i=0; i0 ){ + fprintf(out,"%.*s",i,z); + } + if( z[i]=='<' ){ + fprintf(out,"<"); + }else if( z[i]=='&' ){ + fprintf(out,"&"); + }else if( z[i]=='>' ){ + fprintf(out,">"); + }else if( z[i]=='\"' ){ + fprintf(out,"""); + }else if( z[i]=='\'' ){ + fprintf(out,"'"); + }else{ + break; + } + z += i + 1; + } +} + +/* +** If a field contains any character identified by a 1 in the following +** array, then the string must be quoted for CSV. +*/ +static const char needCsvQuote[] = { + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +}; + +/* +** Output a single term of CSV. Actually, p->separator is used for +** the separator, which may or may not be a comma. p->nullvalue is +** the null value. Strings are quoted using ANSI-C rules. Numbers +** appear outside of quotes. +*/ +static void output_csv(struct callback_data *p, const char *z, int bSep){ + FILE *out = p->out; + if( z==0 ){ + fprintf(out,"%s",p->nullvalue); + }else{ + int i; + int nSep = strlen30(p->separator); + for(i=0; z[i]; i++){ + if( needCsvQuote[((unsigned char*)z)[i]] + || (z[i]==p->separator[0] && + (nSep==1 || memcmp(z, p->separator, nSep)==0)) ){ + i = 0; + break; + } + } + if( i==0 ){ + putc('"', out); + for(i=0; z[i]; i++){ + if( z[i]=='"' ) putc('"', out); + putc(z[i], out); + } + putc('"', out); + }else{ + fprintf(out, "%s", z); + } + } + if( bSep ){ + fprintf(p->out, "%s", p->separator); + } +} + +#ifdef SIGINT +/* +** This routine runs when the user presses Ctrl-C +*/ +static void interrupt_handler(int NotUsed){ + UNUSED_PARAMETER(NotUsed); + seenInterrupt = 1; + if( db ) sqlite3_interrupt(db); +} +#endif + +/* +** This is the callback routine that the shell +** invokes for each row of a query result. +*/ +static int shell_callback(void *pArg, int nArg, char **azArg, char **azCol, int *aiType){ + int i; + struct callback_data *p = (struct callback_data*)pArg; + + switch( p->mode ){ + case MODE_Line: { + int w = 5; + if( azArg==0 ) break; + for(i=0; iw ) w = len; + } + if( p->cnt++>0 ) fprintf(p->out,"\n"); + for(i=0; iout,"%*s = %s\n", w, azCol[i], + azArg[i] ? azArg[i] : p->nullvalue); + } + break; + } + case MODE_Explain: + case MODE_Column: { + if( p->cnt++==0 ){ + for(i=0; icolWidth) ){ + w = p->colWidth[i]; + }else{ + w = 0; + } + if( w<=0 ){ + w = strlen30(azCol[i] ? azCol[i] : ""); + if( w<10 ) w = 10; + n = strlen30(azArg && azArg[i] ? azArg[i] : p->nullvalue); + if( wactualWidth) ){ + p->actualWidth[i] = w; + } + if( p->showHeader ){ + fprintf(p->out,"%-*.*s%s",w,w,azCol[i], i==nArg-1 ? "\n": " "); + } + } + if( p->showHeader ){ + for(i=0; iactualWidth) ){ + w = p->actualWidth[i]; + }else{ + w = 10; + } + fprintf(p->out,"%-*.*s%s",w,w,"-----------------------------------" + "----------------------------------------------------------", + i==nArg-1 ? "\n": " "); + } + } + } + if( azArg==0 ) break; + for(i=0; iactualWidth) ){ + w = p->actualWidth[i]; + }else{ + w = 10; + } + if( p->mode==MODE_Explain && azArg[i] && + strlen30(azArg[i])>w ){ + w = strlen30(azArg[i]); + } + fprintf(p->out,"%-*.*s%s",w,w, + azArg[i] ? azArg[i] : p->nullvalue, i==nArg-1 ? "\n": " "); + } + break; + } + case MODE_Semi: + case MODE_List: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; iout,"%s%s",azCol[i], i==nArg-1 ? "\n" : p->separator); + } + } + if( azArg==0 ) break; + for(i=0; inullvalue; + fprintf(p->out, "%s", z); + if( iout, "%s", p->separator); + }else if( p->mode==MODE_Semi ){ + fprintf(p->out, ";\n"); + }else{ + fprintf(p->out, "\n"); + } + } + break; + } + case MODE_Html: { + if( p->cnt++==0 && p->showHeader ){ + fprintf(p->out,""); + for(i=0; iout,""); + output_html_string(p->out, azCol[i]); + fprintf(p->out,"\n"); + } + fprintf(p->out,"\n"); + } + if( azArg==0 ) break; + fprintf(p->out,""); + for(i=0; iout,""); + output_html_string(p->out, azArg[i] ? azArg[i] : p->nullvalue); + fprintf(p->out,"\n"); + } + fprintf(p->out,"\n"); + break; + } + case MODE_Tcl: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; iout,azCol[i] ? azCol[i] : ""); + fprintf(p->out, "%s", p->separator); + } + fprintf(p->out,"\n"); + } + if( azArg==0 ) break; + for(i=0; iout, azArg[i] ? azArg[i] : p->nullvalue); + fprintf(p->out, "%s", p->separator); + } + fprintf(p->out,"\n"); + break; + } + case MODE_Csv: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; iout,"\n"); + } + if( azArg==0 ) break; + for(i=0; iout,"\n"); + break; + } + case MODE_Insert: { + p->cnt++; + if( azArg==0 ) break; + fprintf(p->out,"INSERT INTO %s VALUES(",p->zDestTable); + for(i=0; i0 ? ",": ""; + if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){ + fprintf(p->out,"%sNULL",zSep); + }else if( aiType && aiType[i]==SQLITE_TEXT ){ + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_quoted_string(p->out, azArg[i]); + }else if( aiType && (aiType[i]==SQLITE_INTEGER || aiType[i]==SQLITE_FLOAT) ){ + fprintf(p->out,"%s%s",zSep, azArg[i]); + }else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){ + const void *pBlob = sqlite3_column_blob(p->pStmt, i); + int nBlob = sqlite3_column_bytes(p->pStmt, i); + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_hex_blob(p->out, pBlob, nBlob); + }else if( isNumber(azArg[i], 0) ){ + fprintf(p->out,"%s%s",zSep, azArg[i]); + }else{ + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_quoted_string(p->out, azArg[i]); + } + } + fprintf(p->out,");\n"); + break; + } + } + return 0; +} + +/* +** This is the callback routine that the SQLite library +** invokes for each row of a query result. +*/ +static int callback(void *pArg, int nArg, char **azArg, char **azCol){ + /* since we don't have type info, call the shell_callback with a NULL value */ + return shell_callback(pArg, nArg, azArg, azCol, NULL); +} + +/* +** Set the destination table field of the callback_data structure to +** the name of the table given. Escape any quote characters in the +** table name. +*/ +static void set_table_name(struct callback_data *p, const char *zName){ + int i, n; + int needQuote; + char *z; + + if( p->zDestTable ){ + free(p->zDestTable); + p->zDestTable = 0; + } + if( zName==0 ) return; + needQuote = !isalpha((unsigned char)*zName) && *zName!='_'; + for(i=n=0; zName[i]; i++, n++){ + if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ){ + needQuote = 1; + if( zName[i]=='\'' ) n++; + } + } + if( needQuote ) n += 2; + z = p->zDestTable = malloc( n+1 ); + if( z==0 ){ + fprintf(stderr,"Error: out of memory\n"); + exit(1); + } + n = 0; + if( needQuote ) z[n++] = '\''; + for(i=0; zName[i]; i++){ + z[n++] = zName[i]; + if( zName[i]=='\'' ) z[n++] = '\''; + } + if( needQuote ) z[n++] = '\''; + z[n] = 0; +} + +/* zIn is either a pointer to a NULL-terminated string in memory obtained +** from malloc(), or a NULL pointer. The string pointed to by zAppend is +** added to zIn, and the result returned in memory obtained from malloc(). +** zIn, if it was not NULL, is freed. +** +** If the third argument, quote, is not '\0', then it is used as a +** quote character for zAppend. +*/ +static char *appendText(char *zIn, char const *zAppend, char quote){ + int len; + int i; + int nAppend = strlen30(zAppend); + int nIn = (zIn?strlen30(zIn):0); + + len = nAppend+nIn+1; + if( quote ){ + len += 2; + for(i=0; iechoOn ){ + const char *zStmtSql = sqlite3_sql(pStmt); + fprintf(pArg->out,"%s\n", zStmtSql ? zStmtSql : zSql); + } + + /* perform the first step. this will tell us if we + ** have a result set or not and how wide it is. + */ + rc = sqlite3_step(pStmt); + /* if we have a result set... */ + if( SQLITE_ROW == rc ){ + /* if we have a callback... */ + if( xCallback ){ + /* allocate space for col name ptr, value ptr, and type */ + int nCol = sqlite3_column_count(pStmt); + void *pData = sqlite3_malloc(3*nCol*sizeof(const char*) + 1); + if( !pData ){ + rc = SQLITE_NOMEM; + }else{ + char **azCols = (char **)pData; /* Names of result columns */ + char **azVals = &azCols[nCol]; /* Results */ + int *aiTypes = (int *)&azVals[nCol]; /* Result types */ + int i; + assert(sizeof(int) <= sizeof(char *)); + /* save off ptrs to column names */ + for(i=0; ipStmt = pStmt; + pArg->cnt = 0; + } + do{ + /* extract the data and data types */ + for(i=0; ipStmt = NULL; + } + } + }else{ + do{ + rc = sqlite3_step(pStmt); + } while( rc == SQLITE_ROW ); + } + } + + /* Finalize the statement just executed. If this fails, save a + ** copy of the error message. Otherwise, set zSql to point to the + ** next statement to execute. */ + rc = sqlite3_finalize(pStmt); + if( rc==SQLITE_OK ){ + zSql = zLeftover; + while( isspace(zSql[0]) ) zSql++; + }else if( pzErrMsg ){ + *pzErrMsg = save_err_msg(db); + } + } + } /* end while */ + + return rc; +} + + +/* +** This is a different callback routine used for dumping the database. +** Each row received by this callback consists of a table name, +** the table type ("index" or "table") and SQL to create the table. +** This routine should print text sufficient to recreate the table. +*/ +static int dump_callback(void *pArg, int nArg, char **azArg, char **azCol){ + int rc; + const char *zTable; + const char *zType; + const char *zSql; + const char *zPrepStmt = 0; + struct callback_data *p = (struct callback_data *)pArg; + + UNUSED_PARAMETER(azCol); + if( nArg!=3 ) return 1; + zTable = azArg[0]; + zType = azArg[1]; + zSql = azArg[2]; + + if( strcmp(zTable, "sqlite_sequence")==0 ){ + zPrepStmt = "DELETE FROM sqlite_sequence;\n"; + }else if( strcmp(zTable, "sqlite_stat1")==0 ){ + fprintf(p->out, "ANALYZE sqlite_master;\n"); + }else if( strncmp(zTable, "sqlite_", 7)==0 ){ + return 0; + }else if( strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){ + char *zIns; + if( !p->writableSchema ){ + fprintf(p->out, "PRAGMA writable_schema=ON;\n"); + p->writableSchema = 1; + } + zIns = sqlite3_mprintf( + "INSERT INTO sqlite_master(type,name,tbl_name,rootpage,sql)" + "VALUES('table','%q','%q',0,'%q');", + zTable, zTable, zSql); + fprintf(p->out, "%s\n", zIns); + sqlite3_free(zIns); + return 0; + }else{ + fprintf(p->out, "%s;\n", zSql); + } + + if( strcmp(zType, "table")==0 ){ + sqlite3_stmt *pTableInfo = 0; + char *zSelect = 0; + char *zTableInfo = 0; + char *zTmp = 0; + int nRow = 0; + + zTableInfo = appendText(zTableInfo, "PRAGMA table_info(", 0); + zTableInfo = appendText(zTableInfo, zTable, '"'); + zTableInfo = appendText(zTableInfo, ");", 0); + + rc = sqlite3_prepare(p->db, zTableInfo, -1, &pTableInfo, 0); + free(zTableInfo); + if( rc!=SQLITE_OK || !pTableInfo ){ + return 1; + } + + zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0); + zTmp = appendText(zTmp, zTable, '"'); + if( zTmp ){ + zSelect = appendText(zSelect, zTmp, '\''); + } + zSelect = appendText(zSelect, " || ' VALUES(' || ", 0); + rc = sqlite3_step(pTableInfo); + while( rc==SQLITE_ROW ){ + const char *zText = (const char *)sqlite3_column_text(pTableInfo, 1); + zSelect = appendText(zSelect, "quote(", 0); + zSelect = appendText(zSelect, zText, '"'); + rc = sqlite3_step(pTableInfo); + if( rc==SQLITE_ROW ){ + zSelect = appendText(zSelect, ") || ',' || ", 0); + }else{ + zSelect = appendText(zSelect, ") ", 0); + } + nRow++; + } + rc = sqlite3_finalize(pTableInfo); + if( rc!=SQLITE_OK || nRow==0 ){ + free(zSelect); + return 1; + } + zSelect = appendText(zSelect, "|| ')' FROM ", 0); + zSelect = appendText(zSelect, zTable, '"'); + + rc = run_table_dump_query(p->out, p->db, zSelect, zPrepStmt); + if( rc==SQLITE_CORRUPT ){ + zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0); + rc = run_table_dump_query(p->out, p->db, zSelect, 0); + } + if( zSelect ) free(zSelect); + } + return 0; +} + +/* +** Run zQuery. Use dump_callback() as the callback routine so that +** the contents of the query are output as SQL statements. +** +** If we get a SQLITE_CORRUPT error, rerun the query after appending +** "ORDER BY rowid DESC" to the end. +*/ +static int run_schema_dump_query( + struct callback_data *p, + const char *zQuery, + char **pzErrMsg +){ + int rc; + rc = sqlite3_exec(p->db, zQuery, dump_callback, p, pzErrMsg); + if( rc==SQLITE_CORRUPT ){ + char *zQ2; + int len = strlen30(zQuery); + if( pzErrMsg ) sqlite3_free(*pzErrMsg); + zQ2 = malloc( len+100 ); + if( zQ2==0 ) return rc; + sqlite3_snprintf(sizeof(zQ2), zQ2, "%s ORDER BY rowid DESC", zQuery); + rc = sqlite3_exec(p->db, zQ2, dump_callback, p, pzErrMsg); + free(zQ2); + } + return rc; +} + +/* +** Text of a help message +*/ +static char zHelp[] = + ".backup ?DB? FILE Backup DB (default \"main\") to FILE\n" + ".bail ON|OFF Stop after hitting an error. Default OFF\n" + ".databases List names and files of attached databases\n" + ".dump ?TABLE? ... Dump the database in an SQL text format\n" + " If TABLE specified, only dump tables matching\n" + " LIKE pattern TABLE.\n" + ".echo ON|OFF Turn command echo on or off\n" + ".exit Exit this program\n" + ".explain ?ON|OFF? Turn output mode suitable for EXPLAIN on or off.\n" + " With no args, it turns EXPLAIN on.\n" + ".header(s) ON|OFF Turn display of headers on or off\n" + ".help Show this message\n" + ".import FILE TABLE Import data from FILE into TABLE\n" + ".indices ?TABLE? Show names of all indices\n" + " If TABLE specified, only show indices for tables\n" + " matching LIKE pattern TABLE.\n" +#ifdef SQLITE_ENABLE_IOTRACE + ".iotrace FILE Enable I/O diagnostic logging to FILE\n" +#endif +#ifndef SQLITE_OMIT_LOAD_EXTENSION + ".load FILE ?ENTRY? Load an extension library\n" +#endif + ".log FILE|off Turn logging on or off. FILE can be stderr/stdout\n" + ".mode MODE ?TABLE? Set output mode where MODE is one of:\n" + " csv Comma-separated values\n" + " column Left-aligned columns. (See .width)\n" + " html HTML code\n" + " insert SQL insert statements for TABLE\n" + " line One value per line\n" + " list Values delimited by .separator string\n" + " tabs Tab-separated values\n" + " tcl TCL list elements\n" + ".nullvalue STRING Print STRING in place of NULL values\n" + ".output FILENAME Send output to FILENAME\n" + ".output stdout Send output to the screen\n" + ".prompt MAIN CONTINUE Replace the standard prompts\n" + ".quit Exit this program\n" + ".read FILENAME Execute SQL in FILENAME\n" + ".restore ?DB? FILE Restore content of DB (default \"main\") from FILE\n" + ".schema ?TABLE? Show the CREATE statements\n" + " If TABLE specified, only show tables matching\n" + " LIKE pattern TABLE.\n" + ".separator STRING Change separator used by output mode and .import\n" + ".show Show the current values for various settings\n" + ".tables ?TABLE? List names of tables\n" + " If TABLE specified, only list tables matching\n" + " LIKE pattern TABLE.\n" + ".timeout MS Try opening locked tables for MS milliseconds\n" + ".width NUM1 NUM2 ... Set column widths for \"column\" mode\n" +; + +static char zTimerHelp[] = + ".timer ON|OFF Turn the CPU timer measurement on or off\n" +; + +/* Forward reference */ +static int process_input(struct callback_data *p, FILE *in); + +/* +** Make sure the database is open. If it is not, then open it. If +** the database fails to open, print an error message and exit. +*/ +static void open_db(struct callback_data *p){ + if( p->db==0 ){ + sqlite3_open(p->zDbFilename, &p->db); + db = p->db; + if( db && sqlite3_errcode(db)==SQLITE_OK ){ + sqlite3_create_function(db, "shellstatic", 0, SQLITE_UTF8, 0, + shellstaticFunc, 0, 0); + } + if( db==0 || SQLITE_OK!=sqlite3_errcode(db) ){ + fprintf(stderr,"Error: unable to open database \"%s\": %s\n", + p->zDbFilename, sqlite3_errmsg(db)); + exit(1); + } +#ifndef SQLITE_OMIT_LOAD_EXTENSION + sqlite3_enable_load_extension(p->db, 1); +#endif + } +} + +/* +** Do C-language style dequoting. +** +** \t -> tab +** \n -> newline +** \r -> carriage return +** \NNN -> ascii character NNN in octal +** \\ -> backslash +*/ +static void resolve_backslashes(char *z){ + int i, j; + char c; + for(i=j=0; (c = z[i])!=0; i++, j++){ + if( c=='\\' ){ + c = z[++i]; + if( c=='n' ){ + c = '\n'; + }else if( c=='t' ){ + c = '\t'; + }else if( c=='r' ){ + c = '\r'; + }else if( c>='0' && c<='7' ){ + c -= '0'; + if( z[i+1]>='0' && z[i+1]<='7' ){ + i++; + c = (c<<3) + z[i] - '0'; + if( z[i+1]>='0' && z[i+1]<='7' ){ + i++; + c = (c<<3) + z[i] - '0'; + } + } + } + } + z[j] = c; + } + z[j] = 0; +} + +/* +** Interpret zArg as a boolean value. Return either 0 or 1. +*/ +static int booleanValue(char *zArg){ + int val = atoi(zArg); + int j; + for(j=0; zArg[j]; j++){ + zArg[j] = (char)tolower(zArg[j]); + } + if( strcmp(zArg,"on")==0 ){ + val = 1; + }else if( strcmp(zArg,"yes")==0 ){ + val = 1; + } + return val; +} + +/* +** If an input line begins with "." then invoke this routine to +** process that line. +** +** Return 1 on error, 2 to exit, and 0 otherwise. +*/ +static int do_meta_command(char *zLine, struct callback_data *p){ + int i = 1; + int nArg = 0; + int n, c; + int rc = 0; + char *azArg[50]; + + /* Parse the input line into tokens. + */ + while( zLine[i] && nArg=3 && strncmp(azArg[0], "backup", n)==0 && nArg>1 && nArg<4){ + const char *zDestFile; + const char *zDb; + sqlite3 *pDest; + sqlite3_backup *pBackup; + if( nArg==2 ){ + zDestFile = azArg[1]; + zDb = "main"; + }else{ + zDestFile = azArg[2]; + zDb = azArg[1]; + } + rc = sqlite3_open(zDestFile, &pDest); + if( rc!=SQLITE_OK ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile); + sqlite3_close(pDest); + return 1; + } + open_db(p); + pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb); + if( pBackup==0 ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); + sqlite3_close(pDest); + return 1; + } + while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK ){} + sqlite3_backup_finish(pBackup); + if( rc==SQLITE_DONE ){ + rc = 0; + }else{ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); + rc = 1; + } + sqlite3_close(pDest); + }else + + if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){ + bail_on_error = booleanValue(azArg[1]); + }else + + if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 1; + data.mode = MODE_Column; + data.colWidth[0] = 3; + data.colWidth[1] = 15; + data.colWidth[2] = 58; + data.cnt = 0; + sqlite3_exec(p->db, "PRAGMA database_list; ", callback, &data, &zErrMsg); + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + } + }else + + if( c=='d' && strncmp(azArg[0], "dump", n)==0 && nArg<3 ){ + char *zErrMsg = 0; + open_db(p); + /* When playing back a "dump", the content might appear in an order + ** which causes immediate foreign key constraints to be violated. + ** So disable foreign-key constraint enforcement to prevent problems. */ + fprintf(p->out, "PRAGMA foreign_keys=OFF;\n"); + fprintf(p->out, "BEGIN TRANSACTION;\n"); + p->writableSchema = 0; + sqlite3_exec(p->db, "PRAGMA writable_schema=ON", 0, 0, 0); + if( nArg==1 ){ + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE sql NOT NULL AND type=='table' AND name!='sqlite_sequence'", 0 + ); + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE name=='sqlite_sequence'", 0 + ); + run_table_dump_query(p->out, p->db, + "SELECT sql FROM sqlite_master " + "WHERE sql NOT NULL AND type IN ('index','trigger','view')", 0 + ); + }else{ + int i; + for(i=1; iout, p->db, + "SELECT sql FROM sqlite_master " + "WHERE sql NOT NULL" + " AND type IN ('index','trigger','view')" + " AND tbl_name LIKE shellstatic()", 0 + ); + zShellStatic = 0; + } + } + if( p->writableSchema ){ + fprintf(p->out, "PRAGMA writable_schema=OFF;\n"); + p->writableSchema = 0; + } + sqlite3_exec(p->db, "PRAGMA writable_schema=OFF", 0, 0, 0); + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + }else{ + fprintf(p->out, "COMMIT;\n"); + } + }else + + if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 && nArg<3 ){ + p->echoOn = booleanValue(azArg[1]); + }else + + if( c=='e' && strncmp(azArg[0], "exit", n)==0 && nArg==1 ){ + rc = 2; + }else + + if( c=='e' && strncmp(azArg[0], "explain", n)==0 && nArg<3 ){ + int val = nArg>=2 ? booleanValue(azArg[1]) : 1; + if(val == 1) { + if(!p->explainPrev.valid) { + p->explainPrev.valid = 1; + p->explainPrev.mode = p->mode; + p->explainPrev.showHeader = p->showHeader; + memcpy(p->explainPrev.colWidth,p->colWidth,sizeof(p->colWidth)); + } + /* We could put this code under the !p->explainValid + ** condition so that it does not execute if we are already in + ** explain mode. However, always executing it allows us an easy + ** was to reset to explain mode in case the user previously + ** did an .explain followed by a .width, .mode or .header + ** command. + */ + p->mode = MODE_Explain; + p->showHeader = 1; + memset(p->colWidth,0,ArraySize(p->colWidth)); + p->colWidth[0] = 4; /* addr */ + p->colWidth[1] = 13; /* opcode */ + p->colWidth[2] = 4; /* P1 */ + p->colWidth[3] = 4; /* P2 */ + p->colWidth[4] = 4; /* P3 */ + p->colWidth[5] = 13; /* P4 */ + p->colWidth[6] = 2; /* P5 */ + p->colWidth[7] = 13; /* Comment */ + }else if (p->explainPrev.valid) { + p->explainPrev.valid = 0; + p->mode = p->explainPrev.mode; + p->showHeader = p->explainPrev.showHeader; + memcpy(p->colWidth,p->explainPrev.colWidth,sizeof(p->colWidth)); + } + }else + + if( c=='h' && (strncmp(azArg[0], "header", n)==0 || + strncmp(azArg[0], "headers", n)==0) && nArg>1 && nArg<3 ){ + p->showHeader = booleanValue(azArg[1]); + }else + + if( c=='h' && strncmp(azArg[0], "help", n)==0 ){ + fprintf(stderr,"%s",zHelp); + if( HAS_TIMER ){ + fprintf(stderr,"%s",zTimerHelp); + } + }else + + if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg==3 ){ + char *zTable = azArg[2]; /* Insert data into this table */ + char *zFile = azArg[1]; /* The file from which to extract data */ + sqlite3_stmt *pStmt = NULL; /* A statement */ + int nCol; /* Number of columns in the table */ + int nByte; /* Number of bytes in an SQL string */ + int i, j; /* Loop counters */ + int nSep; /* Number of bytes in p->separator[] */ + char *zSql; /* An SQL statement */ + char *zLine; /* A single line of input from the file */ + char **azCol; /* zLine[] broken up into columns */ + char *zCommit; /* How to commit changes */ + FILE *in; /* The input file */ + int lineno = 0; /* Line number of input file */ + + open_db(p); + nSep = strlen30(p->separator); + if( nSep==0 ){ + fprintf(stderr, "Error: non-null separator required for import\n"); + return 1; + } + zSql = sqlite3_mprintf("SELECT * FROM '%q'", zTable); + if( zSql==0 ){ + fprintf(stderr, "Error: out of memory\n"); + return 1; + } + nByte = strlen30(zSql); + rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); + sqlite3_free(zSql); + if( rc ){ + if (pStmt) sqlite3_finalize(pStmt); + fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db)); + return 1; + } + nCol = sqlite3_column_count(pStmt); + sqlite3_finalize(pStmt); + pStmt = 0; + if( nCol==0 ) return 0; /* no columns, no error */ + zSql = malloc( nByte + 20 + nCol*2 ); + if( zSql==0 ){ + fprintf(stderr, "Error: out of memory\n"); + return 1; + } + sqlite3_snprintf(nByte+20, zSql, "INSERT INTO '%q' VALUES(?", zTable); + j = strlen30(zSql); + for(i=1; idb, zSql, -1, &pStmt, 0); + free(zSql); + if( rc ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db)); + if (pStmt) sqlite3_finalize(pStmt); + return 1; + } + in = fopen(zFile, "rb"); + if( in==0 ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zFile); + sqlite3_finalize(pStmt); + return 1; + } + azCol = malloc( sizeof(azCol[0])*(nCol+1) ); + if( azCol==0 ){ + fprintf(stderr, "Error: out of memory\n"); + fclose(in); + sqlite3_finalize(pStmt); + return 1; + } + sqlite3_exec(p->db, "BEGIN", 0, 0, 0); + zCommit = "COMMIT"; + while( (zLine = local_getline(0, in))!=0 ){ + char *z; + i = 0; + lineno++; + azCol[0] = zLine; + for(i=0, z=zLine; *z && *z!='\n' && *z!='\r'; z++){ + if( *z==p->separator[0] && strncmp(z, p->separator, nSep)==0 ){ + *z = 0; + i++; + if( idb, zCommit, 0, 0, 0); + }else + + if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg<3 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 0; + data.mode = MODE_List; + if( nArg==1 ){ + rc = sqlite3_exec(p->db, + "SELECT name FROM sqlite_master " + "WHERE type='index' AND name NOT LIKE 'sqlite_%' " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type='index' " + "ORDER BY 1", + callback, &data, &zErrMsg + ); + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_exec(p->db, + "SELECT name FROM sqlite_master " + "WHERE type='index' AND tbl_name LIKE shellstatic() " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type='index' AND tbl_name LIKE shellstatic() " + "ORDER BY 1", + callback, &data, &zErrMsg + ); + zShellStatic = 0; + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + }else if( rc != SQLITE_OK ){ + fprintf(stderr,"Error: querying sqlite_master and sqlite_temp_master\n"); + rc = 1; + } + }else + +#ifdef SQLITE_ENABLE_IOTRACE + if( c=='i' && strncmp(azArg[0], "iotrace", n)==0 ){ + extern void (*sqlite3IoTrace)(const char*, ...); + if( iotrace && iotrace!=stdout ) fclose(iotrace); + iotrace = 0; + if( nArg<2 ){ + sqlite3IoTrace = 0; + }else if( strcmp(azArg[1], "-")==0 ){ + sqlite3IoTrace = iotracePrintf; + iotrace = stdout; + }else{ + iotrace = fopen(azArg[1], "w"); + if( iotrace==0 ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", azArg[1]); + sqlite3IoTrace = 0; + rc = 1; + }else{ + sqlite3IoTrace = iotracePrintf; + } + } + }else +#endif + +#ifndef SQLITE_OMIT_LOAD_EXTENSION + if( c=='l' && strncmp(azArg[0], "load", n)==0 && nArg>=2 ){ + const char *zFile, *zProc; + char *zErrMsg = 0; + zFile = azArg[1]; + zProc = nArg>=3 ? azArg[2] : 0; + open_db(p); + rc = sqlite3_load_extension(p->db, zFile, zProc, &zErrMsg); + if( rc!=SQLITE_OK ){ + fprintf(stderr, "Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + } + }else +#endif + + if( c=='l' && strncmp(azArg[0], "log", n)==0 && nArg>=1 ){ + const char *zFile = azArg[1]; + if( p->pLog && p->pLog!=stdout && p->pLog!=stderr ){ + fclose(p->pLog); + p->pLog = 0; + } + if( strcmp(zFile,"stdout")==0 ){ + p->pLog = stdout; + }else if( strcmp(zFile, "stderr")==0 ){ + p->pLog = stderr; + }else if( strcmp(zFile, "off")==0 ){ + p->pLog = 0; + }else{ + p->pLog = fopen(zFile, "w"); + if( p->pLog==0 ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zFile); + } + } + }else + + if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==2 ){ + int n2 = strlen30(azArg[1]); + if( (n2==4 && strncmp(azArg[1],"line",n2)==0) + || + (n2==5 && strncmp(azArg[1],"lines",n2)==0) ){ + p->mode = MODE_Line; + }else if( (n2==6 && strncmp(azArg[1],"column",n2)==0) + || + (n2==7 && strncmp(azArg[1],"columns",n2)==0) ){ + p->mode = MODE_Column; + }else if( n2==4 && strncmp(azArg[1],"list",n2)==0 ){ + p->mode = MODE_List; + }else if( n2==4 && strncmp(azArg[1],"html",n2)==0 ){ + p->mode = MODE_Html; + }else if( n2==3 && strncmp(azArg[1],"tcl",n2)==0 ){ + p->mode = MODE_Tcl; + }else if( n2==3 && strncmp(azArg[1],"csv",n2)==0 ){ + p->mode = MODE_Csv; + sqlite3_snprintf(sizeof(p->separator), p->separator, ","); + }else if( n2==4 && strncmp(azArg[1],"tabs",n2)==0 ){ + p->mode = MODE_List; + sqlite3_snprintf(sizeof(p->separator), p->separator, "\t"); + }else if( n2==6 && strncmp(azArg[1],"insert",n2)==0 ){ + p->mode = MODE_Insert; + set_table_name(p, "table"); + }else { + fprintf(stderr,"Error: mode should be one of: " + "column csv html insert line list tabs tcl\n"); + rc = 1; + } + }else + + if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==3 ){ + int n2 = strlen30(azArg[1]); + if( n2==6 && strncmp(azArg[1],"insert",n2)==0 ){ + p->mode = MODE_Insert; + set_table_name(p, azArg[2]); + }else { + fprintf(stderr, "Error: invalid arguments: " + " \"%s\". Enter \".help\" for help\n", azArg[2]); + rc = 1; + } + }else + + if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) { + sqlite3_snprintf(sizeof(p->nullvalue), p->nullvalue, + "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]); + }else + + if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){ + if( p->out!=stdout ){ + fclose(p->out); + } + if( strcmp(azArg[1],"stdout")==0 ){ + p->out = stdout; + sqlite3_snprintf(sizeof(p->outfile), p->outfile, "stdout"); + }else{ + p->out = fopen(azArg[1], "wb"); + if( p->out==0 ){ + fprintf(stderr,"Error: cannot write to \"%s\"\n", azArg[1]); + p->out = stdout; + rc = 1; + } else { + sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]); + } + } + }else + + if( c=='p' && strncmp(azArg[0], "prompt", n)==0 && (nArg==2 || nArg==3)){ + if( nArg >= 2) { + strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1); + } + if( nArg >= 3) { + strncpy(continuePrompt,azArg[2],(int)ArraySize(continuePrompt)-1); + } + }else + + if( c=='q' && strncmp(azArg[0], "quit", n)==0 && nArg==1 ){ + rc = 2; + }else + + if( c=='r' && n>=3 && strncmp(azArg[0], "read", n)==0 && nArg==2 ){ + FILE *alt = fopen(azArg[1], "rb"); + if( alt==0 ){ + fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]); + rc = 1; + }else{ + rc = process_input(p, alt); + fclose(alt); + } + }else + + if( c=='r' && n>=3 && strncmp(azArg[0], "restore", n)==0 && nArg>1 && nArg<4){ + const char *zSrcFile; + const char *zDb; + sqlite3 *pSrc; + sqlite3_backup *pBackup; + int nTimeout = 0; + + if( nArg==2 ){ + zSrcFile = azArg[1]; + zDb = "main"; + }else{ + zSrcFile = azArg[2]; + zDb = azArg[1]; + } + rc = sqlite3_open(zSrcFile, &pSrc); + if( rc!=SQLITE_OK ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zSrcFile); + sqlite3_close(pSrc); + return 1; + } + open_db(p); + pBackup = sqlite3_backup_init(p->db, zDb, pSrc, "main"); + if( pBackup==0 ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); + sqlite3_close(pSrc); + return 1; + } + while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK + || rc==SQLITE_BUSY ){ + if( rc==SQLITE_BUSY ){ + if( nTimeout++ >= 3 ) break; + sqlite3_sleep(100); + } + } + sqlite3_backup_finish(pBackup); + if( rc==SQLITE_DONE ){ + rc = 0; + }else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){ + fprintf(stderr, "Error: source database is busy\n"); + rc = 1; + }else{ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); + rc = 1; + } + sqlite3_close(pSrc); + }else + + if( c=='s' && strncmp(azArg[0], "schema", n)==0 && nArg<3 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 0; + data.mode = MODE_Semi; + if( nArg>1 ){ + int i; + for(i=0; azArg[1][i]; i++) azArg[1][i] = (char)tolower(azArg[1][i]); + if( strcmp(azArg[1],"sqlite_master")==0 ){ + char *new_argv[2], *new_colv[2]; + new_argv[0] = "CREATE TABLE sqlite_master (\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")"; + new_argv[1] = 0; + new_colv[0] = "sql"; + new_colv[1] = 0; + callback(&data, 1, new_argv, new_colv); + rc = SQLITE_OK; + }else if( strcmp(azArg[1],"sqlite_temp_master")==0 ){ + char *new_argv[2], *new_colv[2]; + new_argv[0] = "CREATE TEMP TABLE sqlite_temp_master (\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")"; + new_argv[1] = 0; + new_colv[0] = "sql"; + new_colv[1] = 0; + callback(&data, 1, new_argv, new_colv); + rc = SQLITE_OK; + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_exec(p->db, + "SELECT sql FROM " + " (SELECT sql sql, type type, tbl_name tbl_name, name name" + " FROM sqlite_master UNION ALL" + " SELECT sql, type, tbl_name, name FROM sqlite_temp_master) " + "WHERE tbl_name LIKE shellstatic() AND type!='meta' AND sql NOTNULL " + "ORDER BY substr(type,2,1), name", + callback, &data, &zErrMsg); + zShellStatic = 0; + } + }else{ + rc = sqlite3_exec(p->db, + "SELECT sql FROM " + " (SELECT sql sql, type type, tbl_name tbl_name, name name" + " FROM sqlite_master UNION ALL" + " SELECT sql, type, tbl_name, name FROM sqlite_temp_master) " + "WHERE type!='meta' AND sql NOTNULL AND name NOT LIKE 'sqlite_%'" + "ORDER BY substr(type,2,1), name", + callback, &data, &zErrMsg + ); + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + }else if( rc != SQLITE_OK ){ + fprintf(stderr,"Error: querying schema information\n"); + rc = 1; + }else{ + rc = 0; + } + }else + + if( c=='s' && strncmp(azArg[0], "separator", n)==0 && nArg==2 ){ + sqlite3_snprintf(sizeof(p->separator), p->separator, + "%.*s", (int)sizeof(p->separator)-1, azArg[1]); + }else + + if( c=='s' && strncmp(azArg[0], "show", n)==0 && nArg==1 ){ + int i; + fprintf(p->out,"%9.9s: %s\n","echo", p->echoOn ? "on" : "off"); + fprintf(p->out,"%9.9s: %s\n","explain", p->explainPrev.valid ? "on" :"off"); + fprintf(p->out,"%9.9s: %s\n","headers", p->showHeader ? "on" : "off"); + fprintf(p->out,"%9.9s: %s\n","mode", modeDescr[p->mode]); + fprintf(p->out,"%9.9s: ", "nullvalue"); + output_c_string(p->out, p->nullvalue); + fprintf(p->out, "\n"); + fprintf(p->out,"%9.9s: %s\n","output", + strlen30(p->outfile) ? p->outfile : "stdout"); + fprintf(p->out,"%9.9s: ", "separator"); + output_c_string(p->out, p->separator); + fprintf(p->out, "\n"); + fprintf(p->out,"%9.9s: ","width"); + for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) { + fprintf(p->out,"%d ",p->colWidth[i]); + } + fprintf(p->out,"\n"); + }else + + if( c=='t' && n>1 && strncmp(azArg[0], "tables", n)==0 && nArg<3 ){ + char **azResult; + int nRow; + char *zErrMsg; + open_db(p); + if( nArg==1 ){ + rc = sqlite3_get_table(p->db, + "SELECT name FROM sqlite_master " + "WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%' " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type IN ('table','view') " + "ORDER BY 1", + &azResult, &nRow, 0, &zErrMsg + ); + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_get_table(p->db, + "SELECT name FROM sqlite_master " + "WHERE type IN ('table','view') AND name LIKE shellstatic() " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type IN ('table','view') AND name LIKE shellstatic() " + "ORDER BY 1", + &azResult, &nRow, 0, &zErrMsg + ); + zShellStatic = 0; + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + }else if( rc != SQLITE_OK ){ + fprintf(stderr,"Error: querying sqlite_master and sqlite_temp_master\n"); + rc = 1; + }else{ + int len, maxlen = 0; + int i, j; + int nPrintCol, nPrintRow; + for(i=1; i<=nRow; i++){ + if( azResult[i]==0 ) continue; + len = strlen30(azResult[i]); + if( len>maxlen ) maxlen = len; + } + nPrintCol = 80/(maxlen+2); + if( nPrintCol<1 ) nPrintCol = 1; + nPrintRow = (nRow + nPrintCol - 1)/nPrintCol; + for(i=0; i4 && strncmp(azArg[0], "timeout", n)==0 && nArg==2 ){ + open_db(p); + sqlite3_busy_timeout(p->db, atoi(azArg[1])); + }else + + if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0 && nArg==2 ){ + enableTimer = booleanValue(azArg[1]); + }else + + if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){ + int j; + assert( nArg<=ArraySize(azArg) ); + for(j=1; jcolWidth); j++){ + p->colWidth[j-1] = atoi(azArg[j]); + } + }else + + { + fprintf(stderr, "Error: unknown command or invalid arguments: " + " \"%s\". Enter \".help\" for help\n", azArg[0]); + rc = 1; + } + + return rc; +} + +/* +** Return TRUE if a semicolon occurs anywhere in the first N characters +** of string z[]. +*/ +static int _contains_semicolon(const char *z, int N){ + int i; + for(i=0; iout); + free(zLine); + zLine = one_input_line(zSql, in); + if( zLine==0 ){ + break; /* We have reached EOF */ + } + if( seenInterrupt ){ + if( in!=0 ) break; + seenInterrupt = 0; + } + lineno++; + if( (zSql==0 || zSql[0]==0) && _all_whitespace(zLine) ) continue; + if( zLine && zLine[0]=='.' && nSql==0 ){ + if( p->echoOn ) printf("%s\n", zLine); + rc = do_meta_command(zLine, p); + if( rc==2 ){ /* exit requested */ + break; + }else if( rc ){ + errCnt++; + } + continue; + } + if( _is_command_terminator(zLine) && _is_complete(zSql, nSql) ){ + memcpy(zLine,";",2); + } + nSqlPrior = nSql; + if( zSql==0 ){ + int i; + for(i=0; zLine[i] && isspace((unsigned char)zLine[i]); i++){} + if( zLine[i]!=0 ){ + nSql = strlen30(zLine); + zSql = malloc( nSql+3 ); + if( zSql==0 ){ + fprintf(stderr, "Error: out of memory\n"); + exit(1); + } + memcpy(zSql, zLine, nSql+1); + startline = lineno; + } + }else{ + int len = strlen30(zLine); + zSql = realloc( zSql, nSql + len + 4 ); + if( zSql==0 ){ + fprintf(stderr,"Error: out of memory\n"); + exit(1); + } + zSql[nSql++] = '\n'; + memcpy(&zSql[nSql], zLine, len+1); + nSql += len; + } + if( zSql && _contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior) + && sqlite3_complete(zSql) ){ + p->cnt = 0; + open_db(p); + BEGIN_TIMER; + rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg); + END_TIMER; + if( rc || zErrMsg ){ + char zPrefix[100]; + if( in!=0 || !stdin_is_interactive ){ + sqlite3_snprintf(sizeof(zPrefix), zPrefix, + "Error: near line %d:", startline); + }else{ + sqlite3_snprintf(sizeof(zPrefix), zPrefix, "Error:"); + } + if( zErrMsg!=0 ){ + fprintf(stderr, "%s %s\n", zPrefix, zErrMsg); + sqlite3_free(zErrMsg); + zErrMsg = 0; + }else{ + fprintf(stderr, "%s %s\n", zPrefix, sqlite3_errmsg(p->db)); + } + errCnt++; + } + free(zSql); + zSql = 0; + nSql = 0; + } + } + if( zSql ){ + if( !_all_whitespace(zSql) ) fprintf(stderr, "Error: incomplete SQL: %s\n", zSql); + free(zSql); + } + free(zLine); + return errCnt; +} + +/* +** Return a pathname which is the user's home directory. A +** 0 return indicates an error of some kind. Space to hold the +** resulting string is obtained from malloc(). The calling +** function should free the result. +*/ +static char *find_home_dir(void){ + char *home_dir = NULL; + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL) + struct passwd *pwent; + uid_t uid = getuid(); + if( (pwent=getpwuid(uid)) != NULL) { + home_dir = pwent->pw_dir; + } +#endif + +#if defined(_WIN32_WCE) + /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv() + */ + home_dir = strdup("/"); +#else + +#if defined(_WIN32) || defined(WIN32) || defined(__OS2__) + if (!home_dir) { + home_dir = getenv("USERPROFILE"); + } +#endif + + if (!home_dir) { + home_dir = getenv("HOME"); + } + +#if defined(_WIN32) || defined(WIN32) || defined(__OS2__) + if (!home_dir) { + char *zDrive, *zPath; + int n; + zDrive = getenv("HOMEDRIVE"); + zPath = getenv("HOMEPATH"); + if( zDrive && zPath ){ + n = strlen30(zDrive) + strlen30(zPath) + 1; + home_dir = malloc( n ); + if( home_dir==0 ) return 0; + sqlite3_snprintf(n, home_dir, "%s%s", zDrive, zPath); + return home_dir; + } + home_dir = "c:\\"; + } +#endif + +#endif /* !_WIN32_WCE */ + + if( home_dir ){ + int n = strlen30(home_dir) + 1; + char *z = malloc( n ); + if( z ) memcpy(z, home_dir, n); + home_dir = z; + } + + return home_dir; +} + +/* +** Read input from the file given by sqliterc_override. Or if that +** parameter is NULL, take input from ~/.sqliterc +** +** Returns the number of errors. +*/ +static int process_sqliterc( + struct callback_data *p, /* Configuration data */ + const char *sqliterc_override /* Name of config file. NULL to use default */ +){ + char *home_dir = NULL; + const char *sqliterc = sqliterc_override; + char *zBuf = 0; + FILE *in = NULL; + int nBuf; + int rc = 0; + + if (sqliterc == NULL) { + home_dir = find_home_dir(); + if( home_dir==0 ){ +#if !defined(__RTP__) && !defined(_WRS_KERNEL) + fprintf(stderr,"%s: Error: cannot locate your home directory\n", Argv0); +#endif + return 1; + } + nBuf = strlen30(home_dir) + 16; + zBuf = malloc( nBuf ); + if( zBuf==0 ){ + fprintf(stderr,"%s: Error: out of memory\n",Argv0); + return 1; + } + sqlite3_snprintf(nBuf, zBuf,"%s/.sqliterc",home_dir); + free(home_dir); + sqliterc = (const char*)zBuf; + } + in = fopen(sqliterc,"rb"); + if( in ){ + if( stdin_is_interactive ){ + fprintf(stderr,"-- Loading resources from %s\n",sqliterc); + } + rc = process_input(p,in); + fclose(in); + } + free(zBuf); + return rc; +} + +/* +** Show available command line options +*/ +static const char zOptions[] = + " -help show this message\n" + " -init filename read/process named file\n" + " -echo print commands before execution\n" + " -[no]header turn headers on or off\n" + " -bail stop after hitting an error\n" + " -interactive force interactive I/O\n" + " -batch force batch I/O\n" + " -column set output mode to 'column'\n" + " -csv set output mode to 'csv'\n" + " -html set output mode to HTML\n" + " -line set output mode to 'line'\n" + " -list set output mode to 'list'\n" + " -separator 'x' set output field separator (|)\n" + " -nullvalue 'text' set text string for NULL values\n" + " -version show SQLite version\n" +; +static void usage(int showDetail){ + fprintf(stderr, + "Usage: %s [OPTIONS] FILENAME [SQL]\n" + "FILENAME is the name of an SQLite database. A new database is created\n" + "if the file does not previously exist.\n", Argv0); + if( showDetail ){ + fprintf(stderr, "OPTIONS include:\n%s", zOptions); + }else{ + fprintf(stderr, "Use the -help option for additional information\n"); + } + exit(1); +} + +/* +** Initialize the state information in data +*/ +static void main_init(struct callback_data *data) { + memset(data, 0, sizeof(*data)); + data->mode = MODE_List; + memcpy(data->separator,"|", 2); + data->showHeader = 0; + sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data); + sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> "); + sqlite3_snprintf(sizeof(continuePrompt), continuePrompt," ...> "); + sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); +} + +int main(int argc, char **argv){ + char *zErrMsg = 0; + struct callback_data data; + const char *zInitFile = 0; + char *zFirstCmd = 0; + int i; + int rc = 0; + + Argv0 = argv[0]; + main_init(&data); + stdin_is_interactive = isatty(0); + + /* Make sure we have a valid signal handler early, before anything + ** else is done. + */ +#ifdef SIGINT + signal(SIGINT, interrupt_handler); +#endif + + /* Do an initial pass through the command-line argument to locate + ** the name of the database file, the name of the initialization file, + ** and the first command to execute. + */ + for(i=1; i0 ){ + return rc; + } + + /* Make a second pass through the command-line argument and set + ** options. This second pass is delayed until after the initialization + ** file is processed so that the command-line arguments will override + ** settings in the initialization file. + */ + for(i=1; i=argc){ + fprintf(stderr,"%s: Error: missing argument for option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + sqlite3_snprintf(sizeof(data.separator), data.separator, + "%.*s",(int)sizeof(data.separator)-1,argv[i]); + }else if( strcmp(z,"-nullvalue")==0 ){ + i++; + if(i>=argc){ + fprintf(stderr,"%s: Error: missing argument for option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + sqlite3_snprintf(sizeof(data.nullvalue), data.nullvalue, + "%.*s",(int)sizeof(data.nullvalue)-1,argv[i]); + }else if( strcmp(z,"-header")==0 ){ + data.showHeader = 1; + }else if( strcmp(z,"-noheader")==0 ){ + data.showHeader = 0; + }else if( strcmp(z,"-echo")==0 ){ + data.echoOn = 1; + }else if( strcmp(z,"-bail")==0 ){ + bail_on_error = 1; + }else if( strcmp(z,"-version")==0 ){ + printf("%s\n", sqlite3_libversion()); + return 0; + }else if( strcmp(z,"-interactive")==0 ){ + stdin_is_interactive = 1; + }else if( strcmp(z,"-batch")==0 ){ + stdin_is_interactive = 0; + }else if( strcmp(z,"-help")==0 || strcmp(z, "--help")==0 ){ + usage(1); + }else{ + fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + } + + if( zFirstCmd ){ + /* Run just the command that follows the database name + */ + if( zFirstCmd[0]=='.' ){ + rc = do_meta_command(zFirstCmd, &data); + return rc; + }else{ + open_db(&data); + rc = shell_exec(data.db, zFirstCmd, shell_callback, &data, &zErrMsg); + if( zErrMsg!=0 ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + return rc!=0 ? rc : 1; + }else if( rc!=0 ){ + fprintf(stderr,"Error: unable to process SQL \"%s\"\n", zFirstCmd); + return rc; + } + } + }else{ + /* Run commands received from standard input + */ + if( stdin_is_interactive ){ + char *zHome; + char *zHistory = 0; + int nHistory; + printf( + "SQLite version %s\n" + "Enter \".help\" for instructions\n" + "Enter SQL statements terminated with a \";\"\n", + sqlite3_libversion() + ); + zHome = find_home_dir(); + if( zHome ){ + nHistory = strlen30(zHome) + 20; + if( (zHistory = malloc(nHistory))!=0 ){ + sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome); + } + } +#if defined(HAVE_READLINE) && HAVE_READLINE==1 + if( zHistory ) read_history(zHistory); +#endif + rc = process_input(&data, 0); + if( zHistory ){ + stifle_history(100); + write_history(zHistory); + free(zHistory); + } + free(zHome); + }else{ + rc = process_input(&data, stdin); + } + } + set_table_name(&data, 0); + if( db ){ + if( sqlite3_close(db)!=SQLITE_OK ){ + fprintf(stderr,"Error: cannot close database \"%s\"\n", sqlite3_errmsg(db)); + rc++; + } + } + return rc; +} diff --git a/win64/sqlite/sqlite3.c b/win64/sqlite/sqlite3.c new file mode 100644 index 0000000..4db4846 --- /dev/null +++ b/win64/sqlite/sqlite3.c @@ -0,0 +1,112444 @@ +/****************************************************************************** +** This file is an amalgamation of many separate C source files from SQLite +** version 3.6.23.1. By combining all the individual C code files into this +** single large file, the entire code can be compiled as a one translation +** unit. This allows many compilers to do optimizations that would not be +** possible if the files were compiled separately. Performance improvements +** of 5% are more are commonly seen when SQLite is compiled as a single +** translation unit. +** +** This file is all you need to compile SQLite. To use SQLite in other +** programs, you need this file and the "sqlite3.h" header file that defines +** the programming interface to the SQLite library. (If you do not have +** the "sqlite3.h" header file at hand, you will find a copy embedded within +** the text of this file. Search for "Begin file sqlite3.h" to find the start +** of the embedded sqlite3.h header file.) Additional code files may be needed +** if you want a wrapper to interface SQLite with your choice of programming +** language. The code for the "sqlite3" command-line shell is also in a +** separate file. This file contains only code for the core SQLite library. +*/ +#define SQLITE_CORE 1 +#define SQLITE_AMALGAMATION 1 +#ifndef SQLITE_PRIVATE +# define SQLITE_PRIVATE static +#endif +#ifndef SQLITE_API +# define SQLITE_API +#endif +/************** Begin file sqliteInt.h ***************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Internal interface definitions for SQLite. +** +*/ +#ifndef _SQLITEINT_H_ +#define _SQLITEINT_H_ + +/* +** These #defines should enable >2GB file support on POSIX if the +** underlying operating system supports it. If the OS lacks +** large file support, or if the OS is windows, these should be no-ops. +** +** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any +** system #includes. Hence, this block of code must be the very first +** code in all source files. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: Red Hat 7.2) but you want your code to work +** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in Red Hat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +/* +** Include the configuration header output by 'configure' if we're using the +** autoconf-based build +*/ +#ifdef _HAVE_SQLITE_CONFIG_H +#include "config.h" +#endif + +/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ +/************** Begin file sqliteLimit.h *************************************/ +/* +** 2007 May 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file defines various limits of what SQLite can process. +*/ + +/* +** The maximum length of a TEXT or BLOB in bytes. This also +** limits the size of a row in a table or index. +** +** The hard limit is the ability of a 32-bit signed integer +** to count the size: 2^31-1 or 2147483647. +*/ +#ifndef SQLITE_MAX_LENGTH +# define SQLITE_MAX_LENGTH 1000000000 +#endif + +/* +** This is the maximum number of +** +** * Columns in a table +** * Columns in an index +** * Columns in a view +** * Terms in the SET clause of an UPDATE statement +** * Terms in the result set of a SELECT statement +** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. +** * Terms in the VALUES clause of an INSERT statement +** +** The hard upper limit here is 32676. Most database people will +** tell you that in a well-normalized database, you usually should +** not have more than a dozen or so columns in any table. And if +** that is the case, there is no point in having more than a few +** dozen values in any of the other situations described above. +*/ +#ifndef SQLITE_MAX_COLUMN +# define SQLITE_MAX_COLUMN 2000 +#endif + +/* +** The maximum length of a single SQL statement in bytes. +** +** It used to be the case that setting this value to zero would +** turn the limit off. That is no longer true. It is not possible +** to turn this limit off. +*/ +#ifndef SQLITE_MAX_SQL_LENGTH +# define SQLITE_MAX_SQL_LENGTH 1000000000 +#endif + +/* +** The maximum depth of an expression tree. This is limited to +** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might +** want to place more severe limits on the complexity of an +** expression. +** +** A value of 0 used to mean that the limit was not enforced. +** But that is no longer true. The limit is now strictly enforced +** at all times. +*/ +#ifndef SQLITE_MAX_EXPR_DEPTH +# define SQLITE_MAX_EXPR_DEPTH 1000 +#endif + +/* +** The maximum number of terms in a compound SELECT statement. +** The code generator for compound SELECT statements does one +** level of recursion for each term. A stack overflow can result +** if the number of terms is too large. In practice, most SQL +** never has more than 3 or 4 terms. Use a value of 0 to disable +** any limit on the number of terms in a compount SELECT. +*/ +#ifndef SQLITE_MAX_COMPOUND_SELECT +# define SQLITE_MAX_COMPOUND_SELECT 500 +#endif + +/* +** The maximum number of opcodes in a VDBE program. +** Not currently enforced. +*/ +#ifndef SQLITE_MAX_VDBE_OP +# define SQLITE_MAX_VDBE_OP 25000 +#endif + +/* +** The maximum number of arguments to an SQL function. +*/ +#ifndef SQLITE_MAX_FUNCTION_ARG +# define SQLITE_MAX_FUNCTION_ARG 127 +#endif + +/* +** The maximum number of in-memory pages to use for the main database +** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE +*/ +#ifndef SQLITE_DEFAULT_CACHE_SIZE +# define SQLITE_DEFAULT_CACHE_SIZE 2000 +#endif +#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE +# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500 +#endif + +/* +** The maximum number of attached databases. This must be between 0 +** and 30. The upper bound on 30 is because a 32-bit integer bitmap +** is used internally to track attached databases. +*/ +#ifndef SQLITE_MAX_ATTACHED +# define SQLITE_MAX_ATTACHED 10 +#endif + + +/* +** The maximum value of a ?nnn wildcard that the parser will accept. +*/ +#ifndef SQLITE_MAX_VARIABLE_NUMBER +# define SQLITE_MAX_VARIABLE_NUMBER 999 +#endif + +/* Maximum page size. The upper bound on this value is 32768. This a limit +** imposed by the necessity of storing the value in a 2-byte unsigned integer +** and the fact that the page size must be a power of 2. +** +** If this limit is changed, then the compiled library is technically +** incompatible with an SQLite library compiled with a different limit. If +** a process operating on a database with a page-size of 65536 bytes +** crashes, then an instance of SQLite compiled with the default page-size +** limit will not be able to rollback the aborted transaction. This could +** lead to database corruption. +*/ +#ifndef SQLITE_MAX_PAGE_SIZE +# define SQLITE_MAX_PAGE_SIZE 32768 +#endif + + +/* +** The default size of a database page. +*/ +#ifndef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE 1024 +#endif +#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE +# undef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE +#endif + +/* +** Ordinarily, if no value is explicitly provided, SQLite creates databases +** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain +** device characteristics (sector-size and atomic write() support), +** SQLite may choose a larger value. This constant is the maximum value +** SQLite will choose on its own. +*/ +#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE +# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 +#endif +#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE +# undef SQLITE_MAX_DEFAULT_PAGE_SIZE +# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE +#endif + + +/* +** Maximum number of pages in one database file. +** +** This is really just the default value for the max_page_count pragma. +** This value can be lowered (or raised) at run-time using that the +** max_page_count macro. +*/ +#ifndef SQLITE_MAX_PAGE_COUNT +# define SQLITE_MAX_PAGE_COUNT 1073741823 +#endif + +/* +** Maximum length (in bytes) of the pattern in a LIKE or GLOB +** operator. +*/ +#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH +# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 +#endif + +/* +** Maximum depth of recursion for triggers. +** +** A value of 1 means that a trigger program will not be able to itself +** fire any triggers. A value of 0 means that no trigger programs at all +** may be executed. +*/ +#ifndef SQLITE_MAX_TRIGGER_DEPTH +# define SQLITE_MAX_TRIGGER_DEPTH 1000 +#endif + +/************** End of sqliteLimit.h *****************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ + +/* Disable nuisance warnings on Borland compilers */ +#if defined(__BORLANDC__) +#pragma warn -rch /* unreachable code */ +#pragma warn -ccc /* Condition is always true or false */ +#pragma warn -aus /* Assigned value is never used */ +#pragma warn -csu /* Comparing signed and unsigned */ +#pragma warn -spa /* Suspicious pointer arithmetic */ +#endif + +/* Needed for various definitions... */ +#ifndef _GNU_SOURCE +# define _GNU_SOURCE +#endif + +/* +** Include standard header files as necessary +*/ +#ifdef HAVE_STDINT_H +#include +#endif +#ifdef HAVE_INTTYPES_H +#include +#endif + +/* +** The number of samples of an index that SQLite takes in order to +** construct a histogram of the table content when running ANALYZE +** and with SQLITE_ENABLE_STAT2 +*/ +#define SQLITE_INDEX_SAMPLES 10 + +/* +** The following macros are used to cast pointers to integers and +** integers to pointers. The way you do this varies from one compiler +** to the next, so we have developed the following set of #if statements +** to generate appropriate macros for a wide range of compilers. +** +** The correct "ANSI" way to do this is to use the intptr_t type. +** Unfortunately, that typedef is not available on all compilers, or +** if it is available, it requires an #include of specific headers +** that very from one machine to the next. +** +** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on +** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). +** So we have to define the macros in different ways depending on the +** compiler. +*/ +#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ +# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) +#elif !defined(__GNUC__) /* Works for compilers other than LLVM */ +# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) +# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) +#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ +# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) +#else /* Generates a warning - but it always works */ +# define SQLITE_INT_TO_PTR(X) ((void*)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(X)) +#endif + +/* +** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. +** Older versions of SQLite used an optional THREADSAFE macro. +** We support that for legacy +*/ +#if !defined(SQLITE_THREADSAFE) +#if defined(THREADSAFE) +# define SQLITE_THREADSAFE THREADSAFE +#else +# define SQLITE_THREADSAFE 1 +#endif +#endif + +/* +** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. +** It determines whether or not the features related to +** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can +** be overridden at runtime using the sqlite3_config() API. +*/ +#if !defined(SQLITE_DEFAULT_MEMSTATUS) +# define SQLITE_DEFAULT_MEMSTATUS 1 +#endif + +/* +** Exactly one of the following macros must be defined in order to +** specify which memory allocation subsystem to use. +** +** SQLITE_SYSTEM_MALLOC // Use normal system malloc() +** SQLITE_MEMDEBUG // Debugging version of system malloc() +** +** (Historical note: There used to be several other options, but we've +** pared it down to just these two.) +** +** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as +** the default. +*/ +#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1 +# error "At most one of the following compile-time configuration options\ + is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG" +#endif +#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0 +# define SQLITE_SYSTEM_MALLOC 1 +#endif + +/* +** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the +** sizes of memory allocations below this value where possible. +*/ +#if !defined(SQLITE_MALLOC_SOFT_LIMIT) +# define SQLITE_MALLOC_SOFT_LIMIT 1024 +#endif + +/* +** We need to define _XOPEN_SOURCE as follows in order to enable +** recursive mutexes on most Unix systems. But Mac OS X is different. +** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, +** so it is omitted there. See ticket #2673. +** +** Later we learn that _XOPEN_SOURCE is poorly or incorrectly +** implemented on some systems. So we avoid defining it at all +** if it is already defined or if it is unneeded because we are +** not doing a threadsafe build. Ticket #2681. +** +** See also ticket #2741. +*/ +#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE +# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ +#endif + +/* +** The TCL headers are only needed when compiling the TCL bindings. +*/ +#if defined(SQLITE_TCL) || defined(TCLSH) +# include +#endif + +/* +** Many people are failing to set -DNDEBUG=1 when compiling SQLite. +** Setting NDEBUG makes the code smaller and run faster. So the following +** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 +** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out +** feature. +*/ +#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) +# define NDEBUG 1 +#endif + +/* +** The testcase() macro is used to aid in coverage testing. When +** doing coverage testing, the condition inside the argument to +** testcase() must be evaluated both true and false in order to +** get full branch coverage. The testcase() macro is inserted +** to help ensure adequate test coverage in places where simple +** condition/decision coverage is inadequate. For example, testcase() +** can be used to make sure boundary values are tested. For +** bitmask tests, testcase() can be used to make sure each bit +** is significant and used at least once. On switch statements +** where multiple cases go to the same block of code, testcase() +** can insure that all cases are evaluated. +** +*/ +#ifdef SQLITE_COVERAGE_TEST +SQLITE_PRIVATE void sqlite3Coverage(int); +# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } +#else +# define testcase(X) +#endif + +/* +** The TESTONLY macro is used to enclose variable declarations or +** other bits of code that are needed to support the arguments +** within testcase() and assert() macros. +*/ +#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) +# define TESTONLY(X) X +#else +# define TESTONLY(X) +#endif + +/* +** Sometimes we need a small amount of code such as a variable initialization +** to setup for a later assert() statement. We do not want this code to +** appear when assert() is disabled. The following macro is therefore +** used to contain that setup code. The "VVA" acronym stands for +** "Verification, Validation, and Accreditation". In other words, the +** code within VVA_ONLY() will only run during verification processes. +*/ +#ifndef NDEBUG +# define VVA_ONLY(X) X +#else +# define VVA_ONLY(X) +#endif + +/* +** The ALWAYS and NEVER macros surround boolean expressions which +** are intended to always be true or false, respectively. Such +** expressions could be omitted from the code completely. But they +** are included in a few cases in order to enhance the resilience +** of SQLite to unexpected behavior - to make the code "self-healing" +** or "ductile" rather than being "brittle" and crashing at the first +** hint of unplanned behavior. +** +** In other words, ALWAYS and NEVER are added for defensive code. +** +** When doing coverage testing ALWAYS and NEVER are hard-coded to +** be true and false so that the unreachable code then specify will +** not be counted as untested code. +*/ +#if defined(SQLITE_COVERAGE_TEST) +# define ALWAYS(X) (1) +# define NEVER(X) (0) +#elif !defined(NDEBUG) +# define ALWAYS(X) ((X)?1:(assert(0),0)) +# define NEVER(X) ((X)?(assert(0),1):0) +#else +# define ALWAYS(X) (X) +# define NEVER(X) (X) +#endif + +/* +** The macro unlikely() is a hint that surrounds a boolean +** expression that is usually false. Macro likely() surrounds +** a boolean expression that is usually true. GCC is able to +** use these hints to generate better code, sometimes. +*/ +#if defined(__GNUC__) && 0 +# define likely(X) __builtin_expect((X),1) +# define unlikely(X) __builtin_expect((X),0) +#else +# define likely(X) !!(X) +# define unlikely(X) !!(X) +#endif + +/************** Include sqlite3.h in the middle of sqliteInt.h ***************/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve the right to make minor changes +** if experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ +#include /* Needed for the definition of va_list */ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +#ifndef SQLITE_API +# define SQLITE_API +#endif + + +/* +** These no-op macros are used in front of interfaces to mark those +** interfaces as either deprecated or experimental. New applications +** should not use deprecated interfaces - they are support for backwards +** compatibility only. Application writers should be aware that +** experimental interfaces are subject to change in point releases. +** +** These macros used to resolve to various kinds of compiler magic that +** would generate warning messages when they were used. But that +** compiler magic ended up generating such a flurry of bug reports +** that we have taken it all out and gone back to using simple +** noop macros. +*/ +#define SQLITE_DEPRECATED +#define SQLITE_EXPERIMENTAL + +/* +** Ensure these symbols were not defined by some previous header file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers +** +** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header +** evaluates to a string literal that is the SQLite version in the +** format "X.Y.Z" where X is the major version number (always 3 for +** SQLite3) and Y is the minor version number and Z is the release number.)^ +** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same +** numbers used in [SQLITE_VERSION].)^ +** The SQLITE_VERSION_NUMBER for any given release of SQLite will also +** be larger than the release from which it is derived. Either Y will +** be held constant and Z will be incremented or else Y will be incremented +** and Z will be reset to zero. +** +** Since version 3.6.18, SQLite source code has been stored in the +** Fossil configuration management +** system. ^The SQLITE_SOURCE_ID macro evalutes to +** a string which identifies a particular check-in of SQLite +** within its configuration management system. ^The SQLITE_SOURCE_ID +** string contains the date and time of the check-in (UTC) and an SHA1 +** hash of the entire source tree. +** +** See also: [sqlite3_libversion()], +** [sqlite3_libversion_number()], [sqlite3_sourceid()], +** [sqlite_version()] and [sqlite_source_id()]. +*/ +#define SQLITE_VERSION "3.6.23.1" +#define SQLITE_VERSION_NUMBER 3006023 +#define SQLITE_SOURCE_ID "2010-03-26 22:28:06 b078b588d617e07886ad156e9f54ade6d823568e" + +/* +** CAPI3REF: Run-Time Library Version Numbers +** KEYWORDS: sqlite3_version, sqlite3_sourceid +** +** These interfaces provide the same information as the [SQLITE_VERSION], +** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros +** but are associated with the library instead of the header file. ^(Cautious +** programmers might include assert() statements in their application to +** verify that values returned by these interfaces match the macros in +** the header, and thus insure that the application is +** compiled with matching library and header files. +** +**
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+** 
)^ +** +** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION] +** macro. ^The sqlite3_libversion() function returns a pointer to the +** to the sqlite3_version[] string constant. The sqlite3_libversion() +** function is provided for use in DLLs since DLL users usually do not have +** direct access to string constants within the DLL. ^The +** sqlite3_libversion_number() function returns an integer equal to +** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns +** a pointer to a string constant whose value is the same as the +** [SQLITE_SOURCE_ID] C preprocessor macro. +** +** See also: [sqlite_version()] and [sqlite_source_id()]. +*/ +SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; +SQLITE_API const char *sqlite3_libversion(void); +SQLITE_API const char *sqlite3_sourceid(void); +SQLITE_API int sqlite3_libversion_number(void); + +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS +/* +** CAPI3REF: Run-Time Library Compilation Options Diagnostics +** +** ^The sqlite3_compileoption_used() function returns 0 or 1 +** indicating whether the specified option was defined at +** compile time. ^The SQLITE_ prefix may be omitted from the +** option name passed to sqlite3_compileoption_used(). +** +** ^The sqlite3_compileoption_get() function allows interating +** over the list of options that were defined at compile time by +** returning the N-th compile time option string. ^If N is out of range, +** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ +** prefix is omitted from any strings returned by +** sqlite3_compileoption_get(). +** +** ^Support for the diagnostic functions sqlite3_compileoption_used() +** and sqlite3_compileoption_get() may be omitted by specifing the +** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. +** +** See also: SQL functions [sqlite_compileoption_used()] and +** [sqlite_compileoption_get()] and the [compile_options pragma]. +*/ +SQLITE_API int sqlite3_compileoption_used(const char *zOptName); +SQLITE_API const char *sqlite3_compileoption_get(int N); +#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe +** +** ^The sqlite3_threadsafe() function returns zero if and only if +** SQLite was compiled mutexing code omitted due to the +** [SQLITE_THREADSAFE] compile-time option being set to 0. +** +** SQLite can be compiled with or without mutexes. When +** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes +** are enabled and SQLite is threadsafe. When the +** [SQLITE_THREADSAFE] macro is 0, +** the mutexes are omitted. Without the mutexes, it is not safe +** to use SQLite concurrently from more than one thread. +** +** Enabling mutexes incurs a measurable performance penalty. +** So if speed is of utmost importance, it makes sense to disable +** the mutexes. But for maximum safety, mutexes should be enabled. +** ^The default behavior is for mutexes to be enabled. +** +** This interface can be used by an application to make sure that the +** version of SQLite that it is linking against was compiled with +** the desired setting of the [SQLITE_THREADSAFE] macro. +** +** This interface only reports on the compile-time mutex setting +** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with +** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but +** can be fully or partially disabled using a call to [sqlite3_config()] +** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], +** or [SQLITE_CONFIG_MUTEX]. ^(The return value of the +** sqlite3_threadsafe() function shows only the compile-time setting of +** thread safety, not any run-time changes to that setting made by +** sqlite3_config(). In other words, the return value from sqlite3_threadsafe() +** is unchanged by calls to sqlite3_config().)^ +** +** See the [threading mode] documentation for additional information. +*/ +SQLITE_API int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle +** KEYWORDS: {database connection} {database connections} +** +** Each open SQLite database is represented by a pointer to an instance of +** the opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] +** is its destructor. There are many other interfaces (such as +** [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on an +** sqlite3 object. +*/ +typedef struct sqlite3 sqlite3; + +/* +** CAPI3REF: 64-Bit Integer Types +** KEYWORDS: sqlite_int64 sqlite_uint64 +** +** Because there is no cross-platform way to specify 64-bit integer types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions. +** The sqlite_int64 and sqlite_uint64 types are supported for backwards +** compatibility only. +** +** ^The sqlite3_int64 and sqlite_int64 types can store integer values +** between -9223372036854775808 and +9223372036854775807 inclusive. ^The +** sqlite3_uint64 and sqlite_uint64 types can store integer values +** between 0 and +18446744073709551615 inclusive. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection +** +** ^The sqlite3_close() routine is the destructor for the [sqlite3] object. +** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is +** successfullly destroyed and all associated resources are deallocated. +** +** Applications must [sqlite3_finalize | finalize] all [prepared statements] +** and [sqlite3_blob_close | close] all [BLOB handles] associated with +** the [sqlite3] object prior to attempting to close the object. ^If +** sqlite3_close() is called on a [database connection] that still has +** outstanding [prepared statements] or [BLOB handles], then it returns +** SQLITE_BUSY. +** +** ^If [sqlite3_close()] is invoked while a transaction is open, +** the transaction is automatically rolled back. +** +** The C parameter to [sqlite3_close(C)] must be either a NULL +** pointer or an [sqlite3] object pointer obtained +** from [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()], and not previously closed. +** ^Calling sqlite3_close() with a NULL pointer argument is a +** harmless no-op. +*/ +SQLITE_API int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface +** +** The sqlite3_exec() interface is a convenience wrapper around +** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], +** that allows an application to run multiple statements of SQL +** without having to use a lot of C code. +** +** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, +** semicolon-separate SQL statements passed into its 2nd argument, +** in the context of the [database connection] passed in as its 1st +** argument. ^If the callback function of the 3rd argument to +** sqlite3_exec() is not NULL, then it is invoked for each result row +** coming out of the evaluated SQL statements. ^The 4th argument to +** to sqlite3_exec() is relayed through to the 1st argument of each +** callback invocation. ^If the callback pointer to sqlite3_exec() +** is NULL, then no callback is ever invoked and result rows are +** ignored. +** +** ^If an error occurs while evaluating the SQL statements passed into +** sqlite3_exec(), then execution of the current statement stops and +** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec() +** is not NULL then any error message is written into memory obtained +** from [sqlite3_malloc()] and passed back through the 5th parameter. +** To avoid memory leaks, the application should invoke [sqlite3_free()] +** on error message strings returned through the 5th parameter of +** of sqlite3_exec() after the error message string is no longer needed. +** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors +** occur, then sqlite3_exec() sets the pointer in its 5th parameter to +** NULL before returning. +** +** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec() +** routine returns SQLITE_ABORT without invoking the callback again and +** without running any subsequent SQL statements. +** +** ^The 2nd argument to the sqlite3_exec() callback function is the +** number of columns in the result. ^The 3rd argument to the sqlite3_exec() +** callback is an array of pointers to strings obtained as if from +** [sqlite3_column_text()], one for each column. ^If an element of a +** result row is NULL then the corresponding string pointer for the +** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the +** sqlite3_exec() callback is an array of pointers to strings where each +** entry represents the name of corresponding result column as obtained +** from [sqlite3_column_name()]. +** +** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer +** to an empty string, or a pointer that contains only whitespace and/or +** SQL comments, then no SQL statements are evaluated and the database +** is not changed. +** +** Restrictions: +** +**
    +**
  • The application must insure that the 1st parameter to sqlite3_exec() +** is a valid and open [database connection]. +**
  • The application must not close [database connection] specified by +** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. +**
  • The application must not modify the SQL statement text passed into +** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. +**
+*/ +SQLITE_API int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluated */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes +** KEYWORDS: SQLITE_OK {error code} {error codes} +** KEYWORDS: {result code} {result codes} +** +** Many SQLite functions return an integer result code from the set shown +** here in order to indicates success or failure. +** +** New error codes may be added in future versions of SQLite. +** +** See also: [SQLITE_IOERR_READ | extended result codes] +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes +** KEYWORDS: {extended error code} {extended error codes} +** KEYWORDS: {extended result code} {extended result codes} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that many of +** these result codes are too coarse-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. The extended result codes are enabled or disabled +** on a per database connection basis using the +** [sqlite3_extended_result_codes()] API. +** +** Some of the available extended result codes are listed here. +** One may expect the number of extended result codes will be expand +** over time. Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) +#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8)) +#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) +#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) +#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) +#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) +#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8) ) + +/* +** CAPI3REF: Flags For File Open Operations +** +** These bit values are intended for use in the +** 3rd parameter to the [sqlite3_open_v2()] interface and +** in the 4th parameter to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */ +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ +#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ +#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ +#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ +#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ + +/* +** CAPI3REF: Device Characteristics +** +** The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. +** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels +** +** SQLite uses one of these integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags +** +** When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of +** these integer values as the second argument. +** +** When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. If the lower four bits of the flag +** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics. +** If the lower four bits equal SQLITE_SYNC_FULL, that means +** to use Mac OS X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + +/* +** CAPI3REF: OS Interface Open File Handle +** +** An [sqlite3_file] object represents an open file in the +** [sqlite3_vfs | OS interface layer]. Individual OS interface +** implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object +** +** Every file opened by the [sqlite3_vfs] xOpen method populates an +** [sqlite3_file] object (or, more commonly, a subclass of the +** [sqlite3_file] object) with a pointer to an instance of this object. +** This object defines the methods used to perform various operations +** against the open file represented by the [sqlite3_file] object. +** +** If the xOpen method sets the sqlite3_file.pMethods element +** to a non-NULL pointer, then the sqlite3_io_methods.xClose method +** may be invoked even if the xOpen reported that it failed. The +** only way to prevent a call to xClose following a failed xOpen +** is for the xOpen to set the sqlite3_file.pMethods element to NULL. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY] +** flag may be ORed in to indicate that only the data of the file +** and not its inode needs to be synced. +** +** The integer values to xLock() and xUnlock() are one of +**
    +**
  • [SQLITE_LOCK_NONE], +**
  • [SQLITE_LOCK_SHARED], +**
  • [SQLITE_LOCK_RESERVED], +**
  • [SQLITE_LOCK_PENDING], or +**
  • [SQLITE_LOCK_EXCLUSIVE]. +**
+** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method checks whether any database connection, +** either in this process or in some other process, is holding a RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false otherwise. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument is an +** integer opcode. The third argument is a generic pointer intended to +** point to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves all opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
    +**
  • [SQLITE_IOCAP_ATOMIC] +**
  • [SQLITE_IOCAP_ATOMIC512] +**
  • [SQLITE_IOCAP_ATOMIC1K] +**
  • [SQLITE_IOCAP_ATOMIC2K] +**
  • [SQLITE_IOCAP_ATOMIC4K] +**
  • [SQLITE_IOCAP_ATOMIC8K] +**
  • [SQLITE_IOCAP_ATOMIC16K] +**
  • [SQLITE_IOCAP_ATOMIC32K] +**
  • [SQLITE_IOCAP_ATOMIC64K] +**
  • [SQLITE_IOCAP_SAFE_APPEND] +**
  • [SQLITE_IOCAP_SEQUENTIAL] +**
+** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +** +** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill +** in the unread portions of the buffer with zeros. A VFS that +** fails to zero-fill short reads might seem to work. However, +** failure to zero-fill short reads will eventually lead to +** database corruption. +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] +** interface. +** +** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode causes the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 +#define SQLITE_GET_LOCKPROXYFILE 2 +#define SQLITE_SET_LOCKPROXYFILE 3 +#define SQLITE_LAST_ERRNO 4 + +/* +** CAPI3REF: Mutex Handle +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object +** +** An instance of the sqlite3_vfs object defines the interface between +** the SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The value of the iVersion field is initially 1 but may be larger in +** future versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. Note that the structure +** of the sqlite3_vfs object changes in the transaction between +** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not +** modified. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered sqlite3_vfs objects are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. Neither the application code nor the VFS +** implementation should use the pNext pointer. +** +** The pNext field is the only field in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** SQLite will guarantee that the zFilename parameter to xOpen +** is either a NULL pointer or string obtained +** from xFullPathname(). SQLite further guarantees that +** the string will be valid and unchanged until xClose() is +** called. Because of the previous sentence, +** the [sqlite3_file] can safely store a pointer to the +** filename if it needs to remember the filename for some reason. +** If the zFilename parameter is xOpen is a NULL pointer then xOpen +** must invent its own temporary name for the file. Whenever the +** xFilename parameter is NULL it will also be the case that the +** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. +** +** The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. +** +** SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
    +**
  • [SQLITE_OPEN_MAIN_DB] +**
  • [SQLITE_OPEN_MAIN_JOURNAL] +**
  • [SQLITE_OPEN_TEMP_DB] +**
  • [SQLITE_OPEN_TEMP_JOURNAL] +**
  • [SQLITE_OPEN_TRANSIENT_DB] +**
  • [SQLITE_OPEN_SUBJOURNAL] +**
  • [SQLITE_OPEN_MASTER_JOURNAL] +**
+** +** The file I/O implementation can use the object type flags to +** change the way it deals with files. For example, an application +** that does not care about crash recovery or rollback might make +** the open of a journal file a no-op. Writes to this journal would +** also be no-ops, and any attempt to read the journal would return +** SQLITE_IOERR. Or the implementation might recognize that a database +** file will be doing page-aligned sector reads and writes in a random +** order and set up its I/O subsystem accordingly. +** +** SQLite might also add one of the following flags to the xOpen method: +** +**
    +**
  • [SQLITE_OPEN_DELETEONCLOSE] +**
  • [SQLITE_OPEN_EXCLUSIVE] +**
+** +** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** +** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction +** with the [SQLITE_OPEN_CREATE] flag, which are both directly +** analogous to the O_EXCL and O_CREAT flags of the POSIX open() +** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the +** SQLITE_OPEN_CREATE, is used to indicate that file should always +** be created, and that it is an error if it already exists. +** It is not used to indicate the file should be opened +** for exclusive access. +** +** At least szOsFile bytes of memory are allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. The xOpen method does not have to +** allocate the structure; it should just fill it in. Note that +** the xOpen method must set the sqlite3_file.pMethods to either +** a valid [sqlite3_io_methods] object or to NULL. xOpen must do +** this even if the open fails. SQLite expects that the sqlite3_file.pMethods +** element will be valid after xOpen returns regardless of the success +** or failure of the xOpen call. +** +** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to +** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test whether a file is at least readable. The file can be a +** directory. +** +** SQLite will always allocate at least mxPathname+1 bytes for the +** output buffer xFullPathname. The exact size of the output buffer +** is also passed as a parameter to both methods. If the output buffer +** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is +** handled as a fatal error by SQLite, vfs implementations should endeavor +** to prevent this by setting mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. +** The xSleep() method causes the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and time. +** +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + int (*xGetLastError)(sqlite3_vfs*, int, char *); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method +** +** These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. They determine +** what kind of permissions the xAccess method is looking for. +** With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks whether the file exists. +** With SQLITE_ACCESS_READWRITE, the xAccess method +** checks whether the file is both readable and writable. +** With SQLITE_ACCESS_READ, the xAccess method +** checks whether the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Initialize The SQLite Library +** +** ^The sqlite3_initialize() routine initializes the +** SQLite library. ^The sqlite3_shutdown() routine +** deallocates any resources that were allocated by sqlite3_initialize(). +** These routines are designed to aid in process initialization and +** shutdown on embedded systems. Workstation applications using +** SQLite normally do not need to invoke either of these routines. +** +** A call to sqlite3_initialize() is an "effective" call if it is +** the first time sqlite3_initialize() is invoked during the lifetime of +** the process, or if it is the first time sqlite3_initialize() is invoked +** following a call to sqlite3_shutdown(). ^(Only an effective call +** of sqlite3_initialize() does any initialization. All other calls +** are harmless no-ops.)^ +** +** A call to sqlite3_shutdown() is an "effective" call if it is the first +** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only +** an effective call to sqlite3_shutdown() does any deinitialization. +** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^ +** +** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown() +** is not. The sqlite3_shutdown() interface must only be called from a +** single thread. All open [database connections] must be closed and all +** other SQLite resources must be deallocated prior to invoking +** sqlite3_shutdown(). +** +** Among other things, ^sqlite3_initialize() will invoke +** sqlite3_os_init(). Similarly, ^sqlite3_shutdown() +** will invoke sqlite3_os_end(). +** +** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success. +** ^If for some reason, sqlite3_initialize() is unable to initialize +** the library (perhaps it is unable to allocate a needed resource such +** as a mutex) it returns an [error code] other than [SQLITE_OK]. +** +** ^The sqlite3_initialize() routine is called internally by many other +** SQLite interfaces so that an application usually does not need to +** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] +** calls sqlite3_initialize() so the SQLite library will be automatically +** initialized when [sqlite3_open()] is called if it has not be initialized +** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] +** compile-time option, then the automatic calls to sqlite3_initialize() +** are omitted and the application must call sqlite3_initialize() directly +** prior to using any other SQLite interface. For maximum portability, +** it is recommended that applications always invoke sqlite3_initialize() +** directly prior to using any other SQLite interface. Future releases +** of SQLite may require this. In other words, the behavior exhibited +** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the +** default behavior in some future release of SQLite. +** +** The sqlite3_os_init() routine does operating-system specific +** initialization of the SQLite library. The sqlite3_os_end() +** routine undoes the effect of sqlite3_os_init(). Typical tasks +** performed by these routines include allocation or deallocation +** of static resources, initialization of global variables, +** setting up a default [sqlite3_vfs] module, or setting up +** a default configuration using [sqlite3_config()]. +** +** The application should never invoke either sqlite3_os_init() +** or sqlite3_os_end() directly. The application should only invoke +** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() +** interface is called automatically by sqlite3_initialize() and +** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate +** implementations for sqlite3_os_init() and sqlite3_os_end() +** are built into SQLite when it is compiled for Unix, Windows, or OS/2. +** When [custom builds | built for other platforms] +** (using the [SQLITE_OS_OTHER=1] compile-time +** option) the application must supply a suitable implementation for +** sqlite3_os_init() and sqlite3_os_end(). An application-supplied +** implementation of sqlite3_os_init() or sqlite3_os_end() +** must return [SQLITE_OK] on success and some other [error code] upon +** failure. +*/ +SQLITE_API int sqlite3_initialize(void); +SQLITE_API int sqlite3_shutdown(void); +SQLITE_API int sqlite3_os_init(void); +SQLITE_API int sqlite3_os_end(void); + +/* +** CAPI3REF: Configuring The SQLite Library +** +** The sqlite3_config() interface is used to make global configuration +** changes to SQLite in order to tune SQLite to the specific needs of +** the application. The default configuration is recommended for most +** applications and so this routine is usually not necessary. It is +** provided to support rare applications with unusual needs. +** +** The sqlite3_config() interface is not threadsafe. The application +** must insure that no other SQLite interfaces are invoked by other +** threads while sqlite3_config() is running. Furthermore, sqlite3_config() +** may only be invoked prior to library initialization using +** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. +** ^If sqlite3_config() is called after [sqlite3_initialize()] and before +** [sqlite3_shutdown()] then it will return SQLITE_MISUSE. +** Note, however, that ^sqlite3_config() can be called as part of the +** implementation of an application-defined [sqlite3_os_init()]. +** +** The first argument to sqlite3_config() is an integer +** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines +** what property of SQLite is to be configured. Subsequent arguments +** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option] +** in the first argument. +** +** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. +** ^If the option is unknown or SQLite is unable to set the option +** then this routine returns a non-zero [error code]. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_config(int, ...); + +/* +** CAPI3REF: Configure database connections +** EXPERIMENTAL +** +** The sqlite3_db_config() interface is used to make configuration +** changes to a [database connection]. The interface is similar to +** [sqlite3_config()] except that the changes apply to a single +** [database connection] (specified in the first argument). The +** sqlite3_db_config() interface should only be used immediately after +** the database connection is created using [sqlite3_open()], +** [sqlite3_open16()], or [sqlite3_open_v2()]. +** +** The second argument to sqlite3_db_config(D,V,...) is the +** configuration verb - an integer code that indicates what +** aspect of the [database connection] is being configured. +** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE]. +** New verbs are likely to be added in future releases of SQLite. +** Additional arguments depend on the verb. +** +** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if +** the call is considered successful. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...); + +/* +** CAPI3REF: Memory Allocation Routines +** EXPERIMENTAL +** +** An instance of this object defines the interface between SQLite +** and low-level memory allocation routines. +** +** This object is used in only one place in the SQLite interface. +** A pointer to an instance of this object is the argument to +** [sqlite3_config()] when the configuration option is +** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. +** By creating an instance of this object +** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) +** during configuration, an application can specify an alternative +** memory allocation subsystem for SQLite to use for all of its +** dynamic memory needs. +** +** Note that SQLite comes with several [built-in memory allocators] +** that are perfectly adequate for the overwhelming majority of applications +** and that this object is only useful to a tiny minority of applications +** with specialized memory allocation requirements. This object is +** also used during testing of SQLite in order to specify an alternative +** memory allocator that simulates memory out-of-memory conditions in +** order to verify that SQLite recovers gracefully from such +** conditions. +** +** The xMalloc and xFree methods must work like the +** malloc() and free() functions from the standard C library. +** The xRealloc method must work like realloc() from the standard C library +** with the exception that if the second argument to xRealloc is zero, +** xRealloc must be a no-op - it must not perform any allocation or +** deallocation. ^SQLite guarantees that the second argument to +** xRealloc is always a value returned by a prior call to xRoundup. +** And so in cases where xRoundup always returns a positive number, +** xRealloc can perform exactly as the standard library realloc() and +** still be in compliance with this specification. +** +** xSize should return the allocated size of a memory allocation +** previously obtained from xMalloc or xRealloc. The allocated size +** is always at least as big as the requested size but may be larger. +** +** The xRoundup method returns what would be the allocated size of +** a memory allocation given a particular requested size. Most memory +** allocators round up memory allocations at least to the next multiple +** of 8. Some allocators round up to a larger multiple or to a power of 2. +** Every memory allocation request coming in through [sqlite3_malloc()] +** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, +** that causes the corresponding memory allocation to fail. +** +** The xInit method initializes the memory allocator. (For example, +** it might allocate any require mutexes or initialize internal data +** structures. The xShutdown method is invoked (indirectly) by +** [sqlite3_shutdown()] and should deallocate any resources acquired +** by xInit. The pAppData pointer is used as the only parameter to +** xInit and xShutdown. +** +** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes +** the xInit method, so the xInit method need not be threadsafe. The +** xShutdown method is only called from [sqlite3_shutdown()] so it does +** not need to be threadsafe either. For all other methods, SQLite +** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the +** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which +** it is by default) and so the methods are automatically serialized. +** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other +** methods must be threadsafe or else make their own arrangements for +** serialization. +** +** SQLite will never invoke xInit() more than once without an intervening +** call to xShutdown(). +*/ +typedef struct sqlite3_mem_methods sqlite3_mem_methods; +struct sqlite3_mem_methods { + void *(*xMalloc)(int); /* Memory allocation function */ + void (*xFree)(void*); /* Free a prior allocation */ + void *(*xRealloc)(void*,int); /* Resize an allocation */ + int (*xSize)(void*); /* Return the size of an allocation */ + int (*xRoundup)(int); /* Round up request size to allocation size */ + int (*xInit)(void*); /* Initialize the memory allocator */ + void (*xShutdown)(void*); /* Deinitialize the memory allocator */ + void *pAppData; /* Argument to xInit() and xShutdown() */ +}; + +/* +** CAPI3REF: Configuration Options +** EXPERIMENTAL +** +** These constants are the available integer configuration options that +** can be passed as the first argument to the [sqlite3_config()] interface. +** +** New configuration options may be added in future releases of SQLite. +** Existing configuration options might be discontinued. Applications +** should check the return code from [sqlite3_config()] to make sure that +** the call worked. The [sqlite3_config()] interface will return a +** non-zero [error code] if a discontinued or unsupported configuration option +** is invoked. +** +**
+**
SQLITE_CONFIG_SINGLETHREAD
+**
There are no arguments to this option. ^This option sets the +** [threading mode] to Single-thread. In other words, it disables +** all mutexing and puts SQLite into a mode where it can only be used +** by a single thread. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to change the [threading mode] from its default +** value of Single-thread and so [sqlite3_config()] will return +** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD +** configuration option.
+** +**
SQLITE_CONFIG_MULTITHREAD
+**
There are no arguments to this option. ^This option sets the +** [threading mode] to Multi-thread. In other words, it disables +** mutexing on [database connection] and [prepared statement] objects. +** The application is responsible for serializing access to +** [database connections] and [prepared statements]. But other mutexes +** are enabled so that SQLite will be safe to use in a multi-threaded +** environment as long as no two threads attempt to use the same +** [database connection] at the same time. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to set the Multi-thread [threading mode] and +** [sqlite3_config()] will return [SQLITE_ERROR] if called with the +** SQLITE_CONFIG_MULTITHREAD configuration option.
+** +**
SQLITE_CONFIG_SERIALIZED
+**
There are no arguments to this option. ^This option sets the +** [threading mode] to Serialized. In other words, this option enables +** all mutexes including the recursive +** mutexes on [database connection] and [prepared statement] objects. +** In this mode (which is the default when SQLite is compiled with +** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access +** to [database connections] and [prepared statements] so that the +** application is free to use the same [database connection] or the +** same [prepared statement] in different threads at the same time. +** ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to set the Serialized [threading mode] and +** [sqlite3_config()] will return [SQLITE_ERROR] if called with the +** SQLITE_CONFIG_SERIALIZED configuration option.
+** +**
SQLITE_CONFIG_MALLOC
+**
^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mem_methods] structure. The argument specifies +** alternative low-level memory allocation routines to be used in place of +** the memory allocation routines built into SQLite.)^ ^SQLite makes +** its own private copy of the content of the [sqlite3_mem_methods] structure +** before the [sqlite3_config()] call returns.
+** +**
SQLITE_CONFIG_GETMALLOC
+**
^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods] +** structure is filled with the currently defined memory allocation routines.)^ +** This option can be used to overload the default memory allocation +** routines with a wrapper that simulations memory allocation failure or +** tracks memory usage, for example.
+** +**
SQLITE_CONFIG_MEMSTATUS
+**
^This option takes single argument of type int, interpreted as a +** boolean, which enables or disables the collection of memory allocation +** statistics. ^(When memory allocation statistics are disabled, the +** following SQLite interfaces become non-operational: +**
    +**
  • [sqlite3_memory_used()] +**
  • [sqlite3_memory_highwater()] +**
  • [sqlite3_soft_heap_limit()] +**
  • [sqlite3_status()] +**
)^ +** ^Memory allocation statistics are enabled by default unless SQLite is +** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory +** allocation statistics are disabled by default. +**
+** +**
SQLITE_CONFIG_SCRATCH
+**
^This option specifies a static memory buffer that SQLite can use for +** scratch memory. There are three arguments: A pointer an 8-byte +** aligned memory buffer from which the scrach allocations will be +** drawn, the size of each scratch allocation (sz), +** and the maximum number of scratch allocations (N). The sz +** argument must be a multiple of 16. The sz parameter should be a few bytes +** larger than the actual scratch space required due to internal overhead. +** The first argument must be a pointer to an 8-byte aligned buffer +** of at least sz*N bytes of memory. +** ^SQLite will use no more than one scratch buffer per thread. So +** N should be set to the expected maximum number of threads. ^SQLite will +** never require a scratch buffer that is more than 6 times the database +** page size. ^If SQLite needs needs additional scratch memory beyond +** what is provided by this configuration option, then +** [sqlite3_malloc()] will be used to obtain the memory needed.
+** +**
SQLITE_CONFIG_PAGECACHE
+**
^This option specifies a static memory buffer that SQLite can use for +** the database page cache with the default page cache implemenation. +** This configuration should not be used if an application-define page +** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option. +** There are three arguments to this option: A pointer to 8-byte aligned +** memory, the size of each page buffer (sz), and the number of pages (N). +** The sz argument should be the size of the largest database page +** (a power of two between 512 and 32768) plus a little extra for each +** page header. ^The page header size is 20 to 40 bytes depending on +** the host architecture. ^It is harmless, apart from the wasted memory, +** to make sz a little too large. The first +** argument should point to an allocation of at least sz*N bytes of memory. +** ^SQLite will use the memory provided by the first argument to satisfy its +** memory needs for the first N pages that it adds to cache. ^If additional +** page cache memory is needed beyond what is provided by this option, then +** SQLite goes to [sqlite3_malloc()] for the additional storage space. +** ^The implementation might use one or more of the N buffers to hold +** memory accounting information. The pointer in the first argument must +** be aligned to an 8-byte boundary or subsequent behavior of SQLite +** will be undefined.
+** +**
SQLITE_CONFIG_HEAP
+**
^This option specifies a static memory buffer that SQLite will use +** for all of its dynamic memory allocation needs beyond those provided +** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. +** There are three arguments: An 8-byte aligned pointer to the memory, +** the number of bytes in the memory buffer, and the minimum allocation size. +** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts +** to using its default memory allocator (the system malloc() implementation), +** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the +** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or +** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory +** allocator is engaged to handle all of SQLites memory allocation needs. +** The first pointer (the memory pointer) must be aligned to an 8-byte +** boundary or subsequent behavior of SQLite will be undefined.
+** +**
SQLITE_CONFIG_MUTEX
+**
^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mutex_methods] structure. The argument specifies +** alternative low-level mutex routines to be used in place +** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the +** content of the [sqlite3_mutex_methods] structure before the call to +** [sqlite3_config()] returns. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** the entire mutexing subsystem is omitted from the build and hence calls to +** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will +** return [SQLITE_ERROR].
+** +**
SQLITE_CONFIG_GETMUTEX
+**
^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mutex_methods] structure. The +** [sqlite3_mutex_methods] +** structure is filled with the currently defined mutex routines.)^ +** This option can be used to overload the default mutex allocation +** routines with a wrapper used to track mutex usage for performance +** profiling or testing, for example. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** the entire mutexing subsystem is omitted from the build and hence calls to +** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will +** return [SQLITE_ERROR].
+** +**
SQLITE_CONFIG_LOOKASIDE
+**
^(This option takes two arguments that determine the default +** memory allocation for the lookaside memory allocator on each +** [database connection]. The first argument is the +** size of each lookaside buffer slot and the second is the number of +** slots allocated to each database connection.)^ ^(This option sets the +** default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] +** verb to [sqlite3_db_config()] can be used to change the lookaside +** configuration on individual connections.)^
+** +**
SQLITE_CONFIG_PCACHE
+**
^(This option takes a single argument which is a pointer to +** an [sqlite3_pcache_methods] object. This object specifies the interface +** to a custom page cache implementation.)^ ^SQLite makes a copy of the +** object and uses it for page cache memory allocations.
+** +**
SQLITE_CONFIG_GETPCACHE
+**
^(This option takes a single argument which is a pointer to an +** [sqlite3_pcache_methods] object. SQLite copies of the current +** page cache implementation into that object.)^
+** +**
+*/ +#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ +#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ +#define SQLITE_CONFIG_SERIALIZED 3 /* nil */ +#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ +#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ +#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */ +#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */ +#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */ +#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */ +#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */ +#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ +/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ +#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ +#define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */ +#define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */ +#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ + +/* +** CAPI3REF: Configuration Options +** EXPERIMENTAL +** +** These constants are the available integer configuration options that +** can be passed as the second argument to the [sqlite3_db_config()] interface. +** +** New configuration options may be added in future releases of SQLite. +** Existing configuration options might be discontinued. Applications +** should check the return code from [sqlite3_db_config()] to make sure that +** the call worked. ^The [sqlite3_db_config()] interface will return a +** non-zero [error code] if a discontinued or unsupported configuration option +** is invoked. +** +**
+**
SQLITE_DBCONFIG_LOOKASIDE
+**
^This option takes three additional arguments that determine the +** [lookaside memory allocator] configuration for the [database connection]. +** ^The first argument (the third parameter to [sqlite3_db_config()] is a +** pointer to an memory buffer to use for lookaside memory. +** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb +** may be NULL in which case SQLite will allocate the +** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the +** size of each lookaside buffer slot. ^The third argument is the number of +** slots. The size of the buffer in the first argument must be greater than +** or equal to the product of the second and third arguments. The buffer +** must be aligned to an 8-byte boundary. ^If the second argument to +** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally +** rounded down to the next smaller +** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]
+** +**
+*/ +#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ + + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes +** +** ^The sqlite3_extended_result_codes() routine enables or disables the +** [extended result codes] feature of SQLite. ^The extended result +** codes are disabled by default for historical compatibility. +*/ +SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid +** +** ^Each entry in an SQLite table has a unique 64-bit signed +** integer key called the [ROWID | "rowid"]. ^The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. ^If +** the table has a column of type [INTEGER PRIMARY KEY] then that column +** is another alias for the rowid. +** +** ^This routine returns the [rowid] of the most recent +** successful [INSERT] into the database from the [database connection] +** in the first argument. ^If no successful [INSERT]s +** have ever occurred on that database connection, zero is returned. +** +** ^(If an [INSERT] occurs within a trigger, then the [rowid] of the inserted +** row is returned by this routine as long as the trigger is running. +** But once the trigger terminates, the value returned by this routine +** reverts to the last value inserted before the trigger fired.)^ +** +** ^An [INSERT] that fails due to a constraint violation is not a +** successful [INSERT] and does not change the value returned by this +** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. ^(When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface.)^ +** +** ^For the purposes of this routine, an [INSERT] is considered to +** be successful even if it is subsequently rolled back. +** +** This function is accessible to SQL statements via the +** [last_insert_rowid() SQL function]. +** +** If a separate thread performs a new [INSERT] on the same +** database connection while the [sqlite3_last_insert_rowid()] +** function is running and thus changes the last insert [rowid], +** then the value returned by [sqlite3_last_insert_rowid()] is +** unpredictable and might not equal either the old or the new +** last insert [rowid]. +*/ +SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified +** +** ^This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the [database connection] specified by the first parameter. +** ^(Only changes that are directly specified by the [INSERT], [UPDATE], +** or [DELETE] statement are counted. Auxiliary changes caused by +** triggers or [foreign key actions] are not counted.)^ Use the +** [sqlite3_total_changes()] function to find the total number of changes +** including changes caused by triggers and foreign key actions. +** +** ^Changes to a view that are simulated by an [INSTEAD OF trigger] +** are not counted. Only real table changes are counted. +** +** ^(A "row change" is a change to a single row of a single table +** caused by an INSERT, DELETE, or UPDATE statement. Rows that +** are changed as side effects of [REPLACE] constraint resolution, +** rollback, ABORT processing, [DROP TABLE], or by any other +** mechanisms do not count as direct row changes.)^ +** +** A "trigger context" is a scope of execution that begins and +** ends with the script of a [CREATE TRIGGER | trigger]. +** Most SQL statements are +** evaluated outside of any trigger. This is the "top level" +** trigger context. If a trigger fires from the top level, a +** new trigger context is entered for the duration of that one +** trigger. Subtriggers create subcontexts for their duration. +** +** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does +** not create a new trigger context. +** +** ^This function returns the number of direct row changes in the +** most recent INSERT, UPDATE, or DELETE statement within the same +** trigger context. +** +** ^Thus, when called from the top level, this function returns the +** number of changes in the most recent INSERT, UPDATE, or DELETE +** that also occurred at the top level. ^(Within the body of a trigger, +** the sqlite3_changes() interface can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** However, the number returned does not include changes +** caused by subtriggers since those have their own context.)^ +** +** See also the [sqlite3_total_changes()] interface, the +** [count_changes pragma], and the [changes() SQL function]. +** +** If a separate thread makes changes on the same database connection +** while [sqlite3_changes()] is running then the value returned +** is unpredictable and not meaningful. +*/ +SQLITE_API int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified +** +** ^This function returns the number of row changes caused by [INSERT], +** [UPDATE] or [DELETE] statements since the [database connection] was opened. +** ^(The count returned by sqlite3_total_changes() includes all changes +** from all [CREATE TRIGGER | trigger] contexts and changes made by +** [foreign key actions]. However, +** the count does not include changes used to implement [REPLACE] constraints, +** do rollbacks or ABORT processing, or [DROP TABLE] processing. The +** count does not include rows of views that fire an [INSTEAD OF trigger], +** though if the INSTEAD OF trigger makes changes of its own, those changes +** are counted.)^ +** ^The sqlite3_total_changes() function counts the changes as soon as +** the statement that makes them is completed (when the statement handle +** is passed to [sqlite3_reset()] or [sqlite3_finalize()]). +** +** See also the [sqlite3_changes()] interface, the +** [count_changes pragma], and the [total_changes() SQL function]. +** +** If a separate thread makes changes on the same database connection +** while [sqlite3_total_changes()] is running then the value +** returned is unpredictable and not meaningful. +*/ +SQLITE_API int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query +** +** ^This function causes any pending database operation to abort and +** return at its earliest opportunity. This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** ^It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. But it +** is not safe to call this routine with a [database connection] that +** is closed or might close before sqlite3_interrupt() returns. +** +** ^If an SQL operation is very nearly finished at the time when +** sqlite3_interrupt() is called, then it might not have an opportunity +** to be interrupted and might continue to completion. +** +** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. +** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE +** that is inside an explicit transaction, then the entire transaction +** will be rolled back automatically. +** +** ^The sqlite3_interrupt(D) call is in effect until all currently running +** SQL statements on [database connection] D complete. ^Any new SQL statements +** that are started after the sqlite3_interrupt() call and before the +** running statements reaches zero are interrupted as if they had been +** running prior to the sqlite3_interrupt() call. ^New SQL statements +** that are started after the running statement count reaches zero are +** not effected by the sqlite3_interrupt(). +** ^A call to sqlite3_interrupt(D) that occurs when there are no running +** SQL statements is a no-op and has no effect on SQL statements +** that are started after the sqlite3_interrupt() call returns. +** +** If the database connection closes while [sqlite3_interrupt()] +** is running then bad things will likely happen. +*/ +SQLITE_API void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete +** +** These routines are useful during command-line input to determine if the +** currently entered text seems to form a complete SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. ^These routines return 1 if the input string +** appears to be a complete SQL statement. ^A statement is judged to be +** complete if it ends with a semicolon token and is not a prefix of a +** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within +** string literals or quoted identifier names or comments are not +** independent tokens (they are part of the token in which they are +** embedded) and thus do not count as a statement terminator. ^Whitespace +** and comments that follow the final semicolon are ignored. +** +** ^These routines return 0 if the statement is incomplete. ^If a +** memory allocation fails, then SQLITE_NOMEM is returned. +** +** ^These routines do not parse the SQL statements thus +** will not detect syntactically incorrect SQL. +** +** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior +** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked +** automatically by sqlite3_complete16(). If that initialization fails, +** then the return value from sqlite3_complete16() will be non-zero +** regardless of whether or not the input SQL is complete.)^ +** +** The input to [sqlite3_complete()] must be a zero-terminated +** UTF-8 string. +** +** The input to [sqlite3_complete16()] must be a zero-terminated +** UTF-16 string in native byte order. +*/ +SQLITE_API int sqlite3_complete(const char *sql); +SQLITE_API int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors +** +** ^This routine sets a callback function that might be invoked whenever +** an attempt is made to open a database table that another thread +** or process has locked. +** +** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. ^If the busy callback +** is not NULL, then the callback might be invoked with two arguments. +** +** ^The first argument to the busy handler is a copy of the void* pointer which +** is the third argument to sqlite3_busy_handler(). ^The second argument to +** the busy handler callback is the number of times that the busy handler has +** been invoked for this locking event. ^If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** ^If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that it will be invoked +** when there is lock contention. ^If SQLite determines that invoking the busy +** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler. +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** ^The default busy callback is NULL. +** +** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. ^If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion +** forces an automatic rollback of the changes. See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** ^(There can only be a single busy handler defined for each +** [database connection]. Setting a new busy handler clears any +** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] +** will also set or clear the busy handler. +** +** The busy callback should not take any actions which modify the +** database connection that invoked the busy handler. Any such actions +** result in undefined behavior. +** +** A busy handler must not close the database connection +** or [prepared statement] that invoked the busy handler. +*/ +SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout +** +** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps +** for a specified amount of time when a table is locked. ^The handler +** will sleep multiple times until at least "ms" milliseconds of sleeping +** have accumulated. ^After at least "ms" milliseconds of sleeping, +** the handler returns 0 which causes [sqlite3_step()] to return +** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** ^Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** ^(There can only be a single busy handler for a particular +** [database connection] any any given moment. If another busy handler +** was defined (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared.)^ +*/ +SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries +** +** Definition: A result table is memory data structure created by the +** [sqlite3_get_table()] interface. A result table records the +** complete query results from one or more queries. +** +** The table conceptually has a number of rows and columns. But +** these numbers are not part of the result table itself. These +** numbers are obtained separately. Let N be the number of rows +** and M be the number of columns. +** +** A result table is an array of pointers to zero-terminated UTF-8 strings. +** There are (N+1)*M elements in the array. The first M pointers point +** to zero-terminated strings that contain the names of the columns. +** The remaining entries all point to query results. NULL values result +** in NULL pointers. All other values are in their UTF-8 zero-terminated +** string representation as returned by [sqlite3_column_text()]. +** +** A result table might consist of one or more memory allocations. +** It is not safe to pass a result table directly to [sqlite3_free()]. +** A result table should be deallocated using [sqlite3_free_table()]. +** +** As an example of the result table format, suppose a query result +** is as follows: +** +**
+**        Name        | Age
+**        -----------------------
+**        Alice       | 43
+**        Bob         | 28
+**        Cindy       | 21
+** 
+** +** There are two column (M==2) and three rows (N==3). Thus the +** result table has 8 entries. Suppose the result table is stored +** in an array names azResult. Then azResult holds this content: +** +**
+**        azResult[0] = "Name";
+**        azResult[1] = "Age";
+**        azResult[2] = "Alice";
+**        azResult[3] = "43";
+**        azResult[4] = "Bob";
+**        azResult[5] = "28";
+**        azResult[6] = "Cindy";
+**        azResult[7] = "21";
+** 
+** +** ^The sqlite3_get_table() function evaluates one or more +** semicolon-separated SQL statements in the zero-terminated UTF-8 +** string of its 2nd parameter and returns a result table to the +** pointer given in its 3rd parameter. +** +** After the application has finished with the result from sqlite3_get_table(), +** it should pass the result table pointer to sqlite3_free_table() in order to +** release the memory that was malloced. Because of the way the +** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling +** function must not try to call [sqlite3_free()] directly. Only +** [sqlite3_free_table()] is able to release the memory properly and safely. +** +** ^(The sqlite3_get_table() interface is implemented as a wrapper around +** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access +** to any internal data structures of SQLite. It uses only the public +** interface defined here. As a consequence, errors that occur in the +** wrapper layer outside of the internal [sqlite3_exec()] call are not +** reflected in subsequent calls to [sqlite3_errcode()] or +** [sqlite3_errmsg()].)^ +*/ +SQLITE_API int sqlite3_get_table( + sqlite3 *db, /* An open database */ + const char *zSql, /* SQL to be evaluated */ + char ***pazResult, /* Results of the query */ + int *pnRow, /* Number of result rows written here */ + int *pnColumn, /* Number of result columns written here */ + char **pzErrmsg /* Error msg written here */ +); +SQLITE_API void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions +** +** These routines are work-alikes of the "printf()" family of functions +** from the standard C library. +** +** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** The strings returned by these two routines should be +** released by [sqlite3_free()]. ^Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** ^(In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. Note that the order of the +** first two parameters is reversed from snprintf().)^ This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. ^(Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer.)^ We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** ^As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. ^The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf() formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** ^(The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal.)^ By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, assume the string variable zText contains text as follows: +** +**
+**  char *zText = "It's a happy day!";
+** 
+** +** One can use this text in an SQL statement as follows: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
+**  INSERT INTO table1 VALUES('It''s a happy day!')
+** 
+** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
+**  INSERT INTO table1 VALUES('It's a happy day!');
+** 
+** +** This second example is an SQL syntax error. As a general rule you should +** always use %q instead of %s when inserting text into a string literal. +** +** ^(The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Additionally, if the parameter in the +** argument list is a NULL pointer, %Q substitutes the text "NULL" (without +** single quotes).)^ So, for example, one could say: +** +**
+**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+**  sqlite3_exec(db, zSQL, 0, 0, 0);
+**  sqlite3_free(zSQL);
+** 
+** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** ^(The "%z" formatting option works like "%s" but with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string.)^ +*/ +SQLITE_API char *sqlite3_mprintf(const char*,...); +SQLITE_API char *sqlite3_vmprintf(const char*, va_list); +SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem +** +** The SQLite core uses these three routines for all of its own +** internal memory allocation needs. "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** Windows VFS uses native malloc() and free() for some operations. +** +** ^The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** ^If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. ^If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** ^Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. ^The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_realloc(). +** +** ^(The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter.)^ ^ If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** ^If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** ^sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** ^If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** ^If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** ^The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be used. +** +** The Windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular Windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +** +** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] +** must be either NULL or else pointers obtained from a prior +** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have +** not yet been released. +** +** The application must not read or write any part of +** a block of memory after it has been released using +** [sqlite3_free()] or [sqlite3_realloc()]. +*/ +SQLITE_API void *sqlite3_malloc(int); +SQLITE_API void *sqlite3_realloc(void*, int); +SQLITE_API void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics +** +** SQLite provides these two interfaces for reporting on the status +** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] +** routines, which form the built-in memory allocation subsystem. +** +** ^The [sqlite3_memory_used()] routine returns the number of bytes +** of memory currently outstanding (malloced but not freed). +** ^The [sqlite3_memory_highwater()] routine returns the maximum +** value of [sqlite3_memory_used()] since the high-water mark +** was last reset. ^The values returned by [sqlite3_memory_used()] and +** [sqlite3_memory_highwater()] include any overhead +** added by SQLite in its implementation of [sqlite3_malloc()], +** but not overhead added by the any underlying system library +** routines that [sqlite3_malloc()] may call. +** +** ^The memory high-water mark is reset to the current value of +** [sqlite3_memory_used()] if and only if the parameter to +** [sqlite3_memory_highwater()] is true. ^The value returned +** by [sqlite3_memory_highwater(1)] is the high-water mark +** prior to the reset. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_used(void); +SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Pseudo-Random Number Generator +** +** SQLite contains a high-quality pseudo-random number generator (PRNG) used to +** select random [ROWID | ROWIDs] when inserting new records into a table that +** already uses the largest possible [ROWID]. The PRNG is also used for +** the build-in random() and randomblob() SQL functions. This interface allows +** applications to access the same PRNG for other purposes. +** +** ^A call to this routine stores N bytes of randomness into buffer P. +** +** ^The first time this routine is invoked (either internally or by +** the application) the PRNG is seeded using randomness obtained +** from the xRandomness method of the default [sqlite3_vfs] object. +** ^On all subsequent invocations, the pseudo-randomness is generated +** internally and without recourse to the [sqlite3_vfs] xRandomness +** method. +*/ +SQLITE_API void sqlite3_randomness(int N, void *P); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks +** +** ^This routine registers a authorizer callback with a particular +** [database connection], supplied in the first argument. +** ^The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. ^The authorizer callback should +** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. ^If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then the [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer will fail with an error message. +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. ^When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer will fail with an error message explaining that +** access is denied. +** +** ^The first parameter to the authorizer callback is a copy of the third +** parameter to the sqlite3_set_authorizer() interface. ^The second parameter +** to the callback is an integer [SQLITE_COPY | action code] that specifies +** the particular action to be authorized. ^The third through sixth parameters +** to the callback are zero-terminated strings that contain additional +** details about the action to be authorized. +** +** ^If the action code is [SQLITE_READ] +** and the callback returns [SQLITE_IGNORE] then the +** [prepared statement] statement is constructed to substitute +** a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] +** return can be used to deny an untrusted user access to individual +** columns of a table. +** ^If the action code is [SQLITE_DELETE] and the callback returns +** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the +** [truncate optimization] is disabled and all rows are deleted individually. +** +** An authorizer is used when [sqlite3_prepare | preparing] +** SQL statements from an untrusted source, to ensure that the SQL statements +** do not try to access data they are not allowed to see, or that they do not +** try to execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being [sqlite3_prepare | prepared] that +** disallows everything except [SELECT] statements. +** +** Applications that need to process SQL from untrusted sources +** might also consider lowering resource limits using [sqlite3_limit()] +** and limiting database size using the [max_page_count] [PRAGMA] +** in addition to using an authorizer. +** +** ^(Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call.)^ ^Disable the authorizer by installing a NULL callback. +** The authorizer is disabled by default. +** +** The authorizer callback must not do anything that will modify +** the database connection that invoked the authorizer callback. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the +** statement might be re-prepared during [sqlite3_step()] due to a +** schema change. Hence, the application should ensure that the +** correct authorizer callback remains in place during the [sqlite3_step()]. +** +** ^Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. Authorization is not +** performed during statement evaluation in [sqlite3_step()], unless +** as stated in the previous paragraph, sqlite3_step() invokes +** sqlite3_prepare_v2() to reprepare a statement after a schema change. +*/ +SQLITE_API int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorize certain SQL statement actions. The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. +** +** These action code values signify what kind of operation is to be +** authorized. The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. ^(The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* Operation NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* NULL Function Name */ +#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions +** EXPERIMENTAL +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** ^The callback function registered by sqlite3_trace() is invoked at +** various times when an SQL statement is being run by [sqlite3_step()]. +** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the +** SQL statement text as the statement first begins executing. +** ^(Additional sqlite3_trace() callbacks might occur +** as each triggered subprogram is entered. The callbacks for triggers +** contain a UTF-8 SQL comment that identifies the trigger.)^ +** +** ^The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. ^The profile callback contains +** the original statement text and an estimate of wall-clock time +** of how long that statement took to run. +*/ +SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks +** +** ^This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. An example use for this +** interface is to keep a GUI updated during a large query. +** +** ^If the progress callback returns non-zero, the operation is +** interrupted. This feature can be used to implement a +** "Cancel" button on a GUI progress dialog box. +** +** The progress handler must not do anything that will modify +** the database connection that invoked the progress handler. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +*/ +SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection +** +** ^These routines open an SQLite database file whose name is given by the +** filename argument. ^The filename argument is interpreted as UTF-8 for +** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte +** order for sqlite3_open16(). ^(A [database connection] handle is usually +** returned in *ppDb, even if an error occurs. The only exception is that +** if SQLite is unable to allocate memory to hold the [sqlite3] object, +** a NULL will be written into *ppDb instead of a pointer to the [sqlite3] +** object.)^ ^(If the database is opened (and/or created) successfully, then +** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error following a failure of any +** of the sqlite3_open() routines. +** +** ^The default encoding for the database will be UTF-8 if +** sqlite3_open() or sqlite3_open_v2() is called and +** UTF-16 in the native byte order if sqlite3_open16() is used. +** +** Whether or not an error occurs when it is opened, resources +** associated with the [database connection] handle should be released by +** passing it to [sqlite3_close()] when it is no longer required. +** +** The sqlite3_open_v2() interface works like sqlite3_open() +** except that it accepts two additional parameters for additional control +** over the new database connection. ^(The flags parameter to +** sqlite3_open_v2() can take one of +** the following three values, optionally combined with the +** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE], +** and/or [SQLITE_OPEN_PRIVATECACHE] flags:)^ +** +**
+** ^(
[SQLITE_OPEN_READONLY]
+**
The database is opened in read-only mode. If the database does not +** already exist, an error is returned.
)^ +** +** ^(
[SQLITE_OPEN_READWRITE]
+**
The database is opened for reading and writing if possible, or reading +** only if the file is write protected by the operating system. In either +** case the database must already exist, otherwise an error is returned.
)^ +** +** ^(
[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
+**
The database is opened for reading and writing, and is creates it if +** it does not already exist. This is the behavior that is always used for +** sqlite3_open() and sqlite3_open16().
)^ +**
+** +** If the 3rd parameter to sqlite3_open_v2() is not one of the +** combinations shown above or one of the combinations shown above combined +** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], +** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags, +** then the behavior is undefined. +** +** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection +** opens in the multi-thread [threading mode] as long as the single-thread +** mode has not been set at compile-time or start-time. ^If the +** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens +** in the serialized [threading mode] unless single-thread was +** previously selected at compile-time or start-time. +** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be +** eligible to use [shared cache mode], regardless of whether or not shared +** cache is enabled using [sqlite3_enable_shared_cache()]. ^The +** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not +** participate in [shared cache mode] even if it is enabled. +** +** ^If the filename is ":memory:", then a private, temporary in-memory database +** is created for the connection. ^This in-memory database will vanish when +** the database connection is closed. Future versions of SQLite might +** make use of additional special filenames that begin with the ":" character. +** It is recommended that when a database filename actually does begin with +** a ":" character you should prefix the filename with a pathname such as +** "./" to avoid ambiguity. +** +** ^If the filename is an empty string, then a private, temporary +** on-disk database will be created. ^This private database will be +** automatically deleted as soon as the database connection is closed. +** +** ^The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system interface that +** the new database connection should use. ^If the fourth parameter is +** a NULL pointer then the default [sqlite3_vfs] object is used. +** +** Note to Windows users: The encoding used for the filename argument +** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** sqlite3_open() or sqlite3_open_v2(). +*/ +SQLITE_API int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +SQLITE_API int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +SQLITE_API int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages +** +** ^The sqlite3_errcode() interface returns the numeric [result code] or +** [extended result code] for the most recent failed sqlite3_* API call +** associated with a [database connection]. If a prior API call failed +** but the most recent API call succeeded, the return value from +** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode() +** interface is the same except that it always returns the +** [extended result code] even when extended result codes are +** disabled. +** +** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF-8 or UTF-16 respectively. +** ^(Memory to hold the error message string is managed internally. +** The application does not need to worry about freeing the result. +** However, the error string might be overwritten or deallocated by +** subsequent calls to other SQLite interface functions.)^ +** +** When the serialized [threading mode] is in use, it might be the +** case that a second error occurs on a separate thread in between +** the time of the first error and the call to these interfaces. +** When that happens, the second error will be reported since these +** interfaces always report the most recent result. To avoid +** this, each thread can obtain exclusive use of the [database connection] D +** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning +** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after +** all calls to the interfaces listed here are completed. +** +** If an interface fails with SQLITE_MISUSE, that means the interface +** was invoked incorrectly by the application. In that case, the +** error code and message may or may not be set. +*/ +SQLITE_API int sqlite3_errcode(sqlite3 *db); +SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); +SQLITE_API const char *sqlite3_errmsg(sqlite3*); +SQLITE_API const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object +** KEYWORDS: {prepared statement} {prepared statements} +** +** An instance of this object represents a single SQL statement. +** This object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
    +**
  1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
  2. Bind values to [host parameters] using the sqlite3_bind_*() +** interfaces. +**
  3. Run the SQL by calling [sqlite3_step()] one or more times. +**
  4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
  5. Destroy the object using [sqlite3_finalize()]. +**
+** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Run-time Limits +** +** ^(This interface allows the size of various constructs to be limited +** on a connection by connection basis. The first parameter is the +** [database connection] whose limit is to be set or queried. The +** second parameter is one of the [limit categories] that define a +** class of constructs to be size limited. The third parameter is the +** new limit for that construct. The function returns the old limit.)^ +** +** ^If the new limit is a negative number, the limit is unchanged. +** ^(For the limit category of SQLITE_LIMIT_XYZ there is a +** [limits | hard upper bound] +** set by a compile-time C preprocessor macro named +** [limits | SQLITE_MAX_XYZ]. +** (The "_LIMIT_" in the name is changed to "_MAX_".))^ +** ^Attempts to increase a limit above its hard upper bound are +** silently truncated to the hard upper bound. +** +** Run-time limits are intended for use in applications that manage +** both their own internal database and also databases that are controlled +** by untrusted external sources. An example application might be a +** web browser that has its own databases for storing history and +** separate databases controlled by JavaScript applications downloaded +** off the Internet. The internal databases can be given the +** large, default limits. Databases managed by external sources can +** be given much smaller limits designed to prevent a denial of service +** attack. Developers might also want to use the [sqlite3_set_authorizer()] +** interface to further control untrusted SQL. The size of the database +** created by an untrusted script can be contained using the +** [max_page_count] [PRAGMA]. +** +** New run-time limit categories may be added in future releases. +*/ +SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); + +/* +** CAPI3REF: Run-Time Limit Categories +** KEYWORDS: {limit category} {*limit categories} +** +** These constants define various performance limits +** that can be lowered at run-time using [sqlite3_limit()]. +** The synopsis of the meanings of the various limits is shown below. +** Additional information is available at [limits | Limits in SQLite]. +** +**
+** ^(
SQLITE_LIMIT_LENGTH
+**
The maximum size of any string or BLOB or table row.
)^ +** +** ^(
SQLITE_LIMIT_SQL_LENGTH
+**
The maximum length of an SQL statement, in bytes.
)^ +** +** ^(
SQLITE_LIMIT_COLUMN
+**
The maximum number of columns in a table definition or in the +** result set of a [SELECT] or the maximum number of columns in an index +** or in an ORDER BY or GROUP BY clause.
)^ +** +** ^(
SQLITE_LIMIT_EXPR_DEPTH
+**
The maximum depth of the parse tree on any expression.
)^ +** +** ^(
SQLITE_LIMIT_COMPOUND_SELECT
+**
The maximum number of terms in a compound SELECT statement.
)^ +** +** ^(
SQLITE_LIMIT_VDBE_OP
+**
The maximum number of instructions in a virtual machine program +** used to implement an SQL statement.
)^ +** +** ^(
SQLITE_LIMIT_FUNCTION_ARG
+**
The maximum number of arguments on a function.
)^ +** +** ^(
SQLITE_LIMIT_ATTACHED
+**
The maximum number of [ATTACH | attached databases].)^
+** +** ^(
SQLITE_LIMIT_LIKE_PATTERN_LENGTH
+**
The maximum length of the pattern argument to the [LIKE] or +** [GLOB] operators.
)^ +** +** ^(
SQLITE_LIMIT_VARIABLE_NUMBER
+**
The maximum number of variables in an SQL statement that can +** be bound.
)^ +** +** ^(
SQLITE_LIMIT_TRIGGER_DEPTH
+**
The maximum depth of recursion for triggers.
)^ +**
+*/ +#define SQLITE_LIMIT_LENGTH 0 +#define SQLITE_LIMIT_SQL_LENGTH 1 +#define SQLITE_LIMIT_COLUMN 2 +#define SQLITE_LIMIT_EXPR_DEPTH 3 +#define SQLITE_LIMIT_COMPOUND_SELECT 4 +#define SQLITE_LIMIT_VDBE_OP 5 +#define SQLITE_LIMIT_FUNCTION_ARG 6 +#define SQLITE_LIMIT_ATTACHED 7 +#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 +#define SQLITE_LIMIT_VARIABLE_NUMBER 9 +#define SQLITE_LIMIT_TRIGGER_DEPTH 10 + +/* +** CAPI3REF: Compiling An SQL Statement +** KEYWORDS: {SQL statement compiler} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** The first argument, "db", is a [database connection] obtained from a +** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or +** [sqlite3_open16()]. The database connection must not have been closed. +** +** The second argument, "zSql", is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. +** +** ^If the nByte argument is less than zero, then zSql is read up to the +** first zero terminator. ^If nByte is non-negative, then it is the maximum +** number of bytes read from zSql. ^When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** the nByte-th byte, whichever comes first. If the caller knows +** that the supplied string is nul-terminated, then there is a small +** performance advantage to be gained by passing an nByte parameter that +** is equal to the number of bytes in the input string including +** the nul-terminator bytes. +** +** ^If pzTail is not NULL then *pzTail is made to point to the first byte +** past the end of the first SQL statement in zSql. These routines only +** compile the first statement in zSql, so *pzTail is left pointing to +** what remains uncompiled. +** +** ^*ppStmt is left pointing to a compiled [prepared statement] that can be +** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set +** to NULL. ^If the input text contains no SQL (if the input is an empty +** string or a comment) then *ppStmt is set to NULL. +** The calling procedure is responsible for deleting the compiled +** SQL statement using [sqlite3_finalize()] after it has finished with it. +** ppStmt may not be NULL. +** +** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK]; +** otherwise an [error code] is returned. +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** ^In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. This causes the [sqlite3_step()] interface to +** behave differently in three ways: +** +**
    +**
  1. +** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. ^If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is +** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the +** error go away. Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. +**
  2. +** +**
  3. +** ^When an error occurs, [sqlite3_step()] will return one of the detailed +** [error codes] or [extended error codes]. ^The legacy behavior was that +** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code +** and the application would have to make a second call to [sqlite3_reset()] +** in order to find the underlying cause of the problem. With the "v2" prepare +** interfaces, the underlying reason for the error is returned immediately. +**
  4. +** +**
  5. +** ^If the value of a [parameter | host parameter] in the WHERE clause might +** change the query plan for a statement, then the statement may be +** automatically recompiled (as if there had been a schema change) on the first +** [sqlite3_step()] call following any change to the +** [sqlite3_bind_text | bindings] of the [parameter]. +**
  6. +**
+*/ +SQLITE_API int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +SQLITE_API int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +SQLITE_API int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +SQLITE_API int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPI3REF: Retrieving Statement SQL +** +** ^This interface can be used to retrieve a saved copy of the original +** SQL text used to create a [prepared statement] if that statement was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. +*/ +SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object +** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} +** +** SQLite uses the sqlite3_value object to represent all values +** that can be stored in a database table. SQLite uses dynamic typing +** for the values it stores. ^Values stored in sqlite3_value objects +** can be integers, floating point values, strings, BLOBs, or NULL. +** +** An sqlite3_value object may be either "protected" or "unprotected". +** Some interfaces require a protected sqlite3_value. Other interfaces +** will accept either a protected or an unprotected sqlite3_value. +** Every interface that accepts sqlite3_value arguments specifies +** whether or not it requires a protected sqlite3_value. +** +** The terms "protected" and "unprotected" refer to whether or not +** a mutex is held. A internal mutex is held for a protected +** sqlite3_value object but no mutex is held for an unprotected +** sqlite3_value object. If SQLite is compiled to be single-threaded +** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) +** or if SQLite is run in one of reduced mutex modes +** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] +** then there is no distinction between protected and unprotected +** sqlite3_value objects and they can be used interchangeably. However, +** for maximum code portability it is recommended that applications +** still make the distinction between between protected and unprotected +** sqlite3_value objects even when not strictly required. +** +** ^The sqlite3_value objects that are passed as parameters into the +** implementation of [application-defined SQL functions] are protected. +** ^The sqlite3_value object returned by +** [sqlite3_column_value()] is unprotected. +** Unprotected sqlite3_value objects may only be used with +** [sqlite3_result_value()] and [sqlite3_bind_value()]. +** The [sqlite3_value_blob | sqlite3_value_type()] family of +** interfaces require protected sqlite3_value objects. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. ^A pointer to an sqlite3_context object +** is always first parameter to [application-defined SQL functions]. +** The application-defined SQL function implementation will pass this +** pointer through into calls to [sqlite3_result_int | sqlite3_result()], +** [sqlite3_aggregate_context()], [sqlite3_user_data()], +** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()], +** and/or [sqlite3_set_auxdata()]. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements +** KEYWORDS: {host parameter} {host parameters} {host parameter name} +** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} +** +** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, +** literals may be replaced by a [parameter] that matches one of following +** templates: +** +**
    +**
  • ? +**
  • ?NNN +**
  • :VVV +**
  • @VVV +**
  • $VVV +**
+** +** In the templates above, NNN represents an integer literal, +** and VVV represents an alphanumeric identifer.)^ ^The values of these +** parameters (also called "host parameter names" or "SQL parameters") +** can be set using the sqlite3_bind_*() routines defined here. +** +** ^The first argument to the sqlite3_bind_*() routines is always +** a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. +** +** ^The second argument is the index of the SQL parameter to be set. +** ^The leftmost SQL parameter has an index of 1. ^When the same named +** SQL parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** ^The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_index()] API if desired. ^The index +** for "?NNN" parameters is the value of NNN. +** ^The NNN value must be between 1 and the [sqlite3_limit()] +** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999). +** +** ^The third argument is the value to bind to the parameter. +** +** ^(In those routines that have a fourth argument, its value is the +** number of bytes in the parameter. To be clear: the value is the +** number of bytes in the value, not the number of characters.)^ +** ^If the fourth parameter is negative, the length of the string is +** the number of bytes up to the first zero terminator. +** +** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** string after SQLite has finished with it. ^If the fifth argument is +** the special value [SQLITE_STATIC], then SQLite assumes that the +** information is in static, unmanaged space and does not need to be freed. +** ^If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. +** +** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeroes. ^A zeroblob uses a fixed amount of memory +** (just an integer to hold its size) while it is being processed. +** Zeroblobs are intended to serve as placeholders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | incremental BLOB I/O] routines. +** ^A negative value for the zeroblob results in a zero-length BLOB. +** +** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer +** for the [prepared statement] or with a prepared statement for which +** [sqlite3_step()] has been called more recently than [sqlite3_reset()], +** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_() +** routine is passed a [prepared statement] that has been finalized, the +** result is undefined and probably harmful. +** +** ^Bindings are not cleared by the [sqlite3_reset()] routine. +** ^Unbound parameters are interpreted as NULL. +** +** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an +** [error code] if anything goes wrong. +** ^[SQLITE_RANGE] is returned if the parameter +** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. +** +** See also: [sqlite3_bind_parameter_count()], +** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. +*/ +SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); +SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int); +SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int); +SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of SQL Parameters +** +** ^This routine can be used to find the number of [SQL parameters] +** in a [prepared statement]. SQL parameters are tokens of the +** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as +** placeholders for values that are [sqlite3_bind_blob | bound] +** to the parameters at a later time. +** +** ^(This routine actually returns the index of the largest (rightmost) +** parameter. For all forms except ?NNN, this will correspond to the +** number of unique parameters. If parameters of the ?NNN form are used, +** there may be gaps in the list.)^ +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_name()], and +** [sqlite3_bind_parameter_index()]. +*/ +SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter +** +** ^The sqlite3_bind_parameter_name(P,N) interface returns +** the name of the N-th [SQL parameter] in the [prepared statement] P. +** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" +** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" +** respectively. +** In other words, the initial ":" or "$" or "@" or "?" +** is included as part of the name.)^ +** ^Parameters of the form "?" without a following integer have no name +** and are referred to as "nameless" or "anonymous parameters". +** +** ^The first host parameter has an index of 1, not 0. +** +** ^If the value N is out of range or if the N-th parameter is +** nameless, then NULL is returned. ^The returned string is +** always in UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +*/ +SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name +** +** ^Return the index of an SQL parameter given its name. ^The +** index value returned is suitable for use as the second +** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero +** is returned if no matching parameter is found. ^The parameter +** name must be given in UTF-8 even if the original statement +** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +*/ +SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement +** +** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset +** the [sqlite3_bind_blob | bindings] on a [prepared statement]. +** ^Use this routine to reset all host parameters to NULL. +*/ +SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set +** +** ^Return the number of columns in the result set returned by the +** [prepared statement]. ^This routine returns 0 if pStmt is an SQL +** statement that does not return data (for example an [UPDATE]). +*/ +SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set +** +** ^These routines return the name assigned to a particular column +** in the result set of a [SELECT] statement. ^The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF-8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF-16 string. ^The first parameter is the [prepared statement] +** that implements the [SELECT] statement. ^The second parameter is the +** column number. ^The leftmost column is number 0. +** +** ^The returned string pointer is valid until either the [prepared statement] +** is destroyed by [sqlite3_finalize()] or until the next call to +** sqlite3_column_name() or sqlite3_column_name16() on the same column. +** +** ^If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +** +** ^The name of a result column is the value of the "AS" clause for +** that column, if there is an AS clause. If there is no AS clause +** then the name of the column is unspecified and may change from +** one release of SQLite to the next. +*/ +SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N); +SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result +** +** ^These routines provide a means to determine the database, table, and +** table column that is the origin of a particular result column in +** [SELECT] statement. +** ^The name of the database or table or column can be returned as +** either a UTF-8 or UTF-16 string. ^The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. +** ^The returned string is valid until the [prepared statement] is destroyed +** using [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** ^The names returned are the original un-aliased names of the +** database, table, and column. +** +** ^The first argument to these interfaces is a [prepared statement]. +** ^These functions return information about the Nth result column returned by +** the statement, where N is the second function argument. +** ^The left-most column is column 0 for these routines. +** +** ^If the Nth column returned by the statement is an expression or +** subquery and is not a column value, then all of these functions return +** NULL. ^These routine might also return NULL if a memory allocation error +** occurs. ^Otherwise, they return the name of the attached database, table, +** or column that query result column was extracted from. +** +** ^As with all other SQLite APIs, those whose names end with "16" return +** UTF-16 encoded strings and the other functions return UTF-8. +** +** ^These APIs are only available if the library was compiled with the +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol. +** +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +** +** If two or more threads call one or more +** [sqlite3_column_database_name | column metadata interfaces] +** for the same [prepared statement] and result column +** at the same time then the results are undefined. +*/ +SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result +** +** ^(The first parameter is a [prepared statement]. +** If this statement is a [SELECT] statement and the Nth column of the +** returned result set of that [SELECT] is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned.)^ ^If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** ^The returned string is always UTF-8 encoded. +** +** ^(For example, given the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** and the following statement to be compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** this routine would return the string "VARIANT" for the second result +** column (i==1), and a NULL pointer for the first result column (i==0).)^ +** +** ^SQLite uses dynamic run-time typing. ^So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. ^Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement +** +** After a [prepared statement] has been prepared using either +** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function +** must be called one or more times to evaluate the statement. +** +** The details of the behavior of the sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** ^In the legacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** ^With the "v2" interface, any of the other [result codes] or +** [extended result codes] might be returned as well. +** +** ^[SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. ^If the statement is a [COMMIT] +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a [COMMIT] and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** ^[SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** ^If the SQL statement being executed returns any data, then [SQLITE_ROW] +** is returned each time a new row of data is ready for processing by the +** caller. The values may be accessed using the [column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** ^[SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** ^With the legacy interface, a more specific error code (for example, +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [prepared statement]. ^In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** Goofy Interface Alert: In the legacy interface, the sqlite3_step() +** API always returns a generic error code, [SQLITE_ERROR], following any +** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call +** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the +** specific [error codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, +** then the more specific [error codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +SQLITE_API int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set +** +** ^The sqlite3_data_count(P) the number of columns in the +** of the result set of [prepared statement] P. +*/ +SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes +** KEYWORDS: SQLITE_TEXT +** +** ^(Every value in SQLite has one of five fundamental datatypes: +** +**
    +**
  • 64-bit signed integer +**
  • 64-bit IEEE floating point number +**
  • string +**
  • BLOB +**
  • NULL +**
)^ +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Result Values From A Query +** KEYWORDS: {column access functions} +** +** These routines form the "result set" interface. +** +** ^These routines return information about a single column of the current +** result row of a query. ^In every case the first argument is a pointer +** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] +** that was returned from [sqlite3_prepare_v2()] or one of its variants) +** and the second argument is the index of the column for which information +** should be returned. ^The leftmost column of the result set has the index 0. +** ^The number of columns in the result can be determined using +** [sqlite3_column_count()]. +** +** If the SQL statement does not currently point to a valid row, or if the +** column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** ^The sqlite3_column_type() routine returns the +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. ^The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** ^If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** ^The value returned does not include the zero terminator at the end +** of the string. ^For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even empty strings, are always zero terminated. ^The return +** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary +** pointer, possibly even a NULL pointer. +** +** ^The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 in native byte order instead of UTF-8. +** ^The zero terminator is not included in this count. +** +** ^The object returned by [sqlite3_column_value()] is an +** [unprotected sqlite3_value] object. An unprotected sqlite3_value object +** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. +** If the [unprotected sqlite3_value] object returned by +** [sqlite3_column_value()] is used in any other way, including calls +** to routines like [sqlite3_value_int()], [sqlite3_value_text()], +** or [sqlite3_value_bytes()], then the behavior is undefined. +** +** These routines attempt to convert the value where appropriate. ^For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to perform the +** conversion automatically. ^(The following table details the conversions +** that are applied: +** +**
+**
+**
Internal
Type
Requested
Type
Conversion +** +**
NULL INTEGER Result is 0 +**
NULL FLOAT Result is 0.0 +**
NULL TEXT Result is NULL pointer +**
NULL BLOB Result is NULL pointer +**
INTEGER FLOAT Convert from integer to float +**
INTEGER TEXT ASCII rendering of the integer +**
INTEGER BLOB Same as INTEGER->TEXT +**
FLOAT INTEGER Convert from float to integer +**
FLOAT TEXT ASCII rendering of the float +**
FLOAT BLOB Same as FLOAT->TEXT +**
TEXT INTEGER Use atoi() +**
TEXT FLOAT Use atof() +**
TEXT BLOB No change +**
BLOB INTEGER Convert to TEXT then use atoi() +**
BLOB FLOAT Convert to TEXT then use atof() +**
BLOB TEXT Add a zero terminator if needed +**
+** )^ +** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** own equivalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** ^Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** ^(Type conversions and pointer invalidations might occur +** in the following cases: +** +**
    +**
  • The initial content is a BLOB and sqlite3_column_text() or +** sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.
  • +**
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.
  • +**
  • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.
  • +**
)^ +** +** ^Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometimes they +** are not possible and in those cases prior pointers are invalidated. +** +** ^(The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
    +**
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • +**
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • +**
)^ +** +** In other words, you should call sqlite3_column_text(), +** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result +** into the desired format, then invoke sqlite3_column_bytes() or +** sqlite3_column_bytes16() to find the size of the result. Do not mix calls +** to sqlite3_column_text() or sqlite3_column_blob() with calls to +** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() +** with calls to sqlite3_column_bytes(). +** +** ^The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. ^The memory space used to hold strings +** and BLOBs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** ^(If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM].)^ +*/ +SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol); +SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol); +SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object +** +** ^The sqlite3_finalize() function is called to delete a [prepared statement]. +** ^If the statement was executed successfully or not executed at all, then +** SQLITE_OK is returned. ^If execution of the statement failed then an +** [error code] or [extended error code] is returned. +** +** ^This routine can be called at any point during the execution of the +** [prepared statement]. ^If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an [sqlite3_interrupt | interrupt]. +** ^Incomplete updates may be rolled back and transactions canceled, +** depending on the circumstances, and the +** [error code] returned will be [SQLITE_ABORT]. +*/ +SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object +** +** The sqlite3_reset() function is called to reset a [prepared statement] +** object back to its initial state, ready to be re-executed. +** ^Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +** +** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S +** back to the beginning of its program. +** +** ^If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], +** or if [sqlite3_step(S)] has never before been called on S, +** then [sqlite3_reset(S)] returns [SQLITE_OK]. +** +** ^If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S indicated an error, then +** [sqlite3_reset(S)] returns an appropriate [error code]. +** +** ^The [sqlite3_reset(S)] interface does not change the values +** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. +*/ +SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions +** KEYWORDS: {function creation routines} +** KEYWORDS: {application-defined SQL function} +** KEYWORDS: {application-defined SQL functions} +** +** ^These two functions (collectively known as "function creation routines") +** are used to add SQL functions or aggregates or to redefine the behavior +** of existing SQL functions or aggregates. The only difference between the +** two is that the second parameter, the name of the (scalar) function or +** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16 +** for sqlite3_create_function16(). +** +** ^The first parameter is the [database connection] to which the SQL +** function is to be added. ^If an application uses more than one database +** connection then application-defined SQL functions must be added +** to each database connection separately. +** +** The second parameter is the name of the SQL function to be created or +** redefined. ^The length of the name is limited to 255 bytes, exclusive of +** the zero-terminator. Note that the name length limit is in bytes, not +** characters. ^Any attempt to create a function with a longer name +** will result in [SQLITE_ERROR] being returned. +** +** ^The third parameter (nArg) +** is the number of arguments that the SQL function or +** aggregate takes. ^If this parameter is -1, then the SQL function or +** aggregate may take any number of arguments between 0 and the limit +** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third +** parameter is less than -1 or greater than 127 then the behavior is +** undefined. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. ^An application may +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** ^When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what text +** encoding is used, then the fourth argument should be [SQLITE_ANY]. +** +** ^(The fifth parameter is an arbitrary pointer. The implementation of the +** function can gain access to this pointer using [sqlite3_user_data()].)^ +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL function or +** aggregate. ^A scalar SQL function requires an implementation of the xFunc +** callback only; NULL pointers should be passed as the xStep and xFinal +** parameters. ^An aggregate SQL function requires an implementation of xStep +** and xFinal and NULL should be passed for xFunc. ^To delete an existing +** SQL function or aggregate, pass NULL for all three function callbacks. +** +** ^It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing preferred text encodings. ^SQLite will use +** the implementation that most closely matches the way in which the +** SQL function is used. ^A function implementation with a non-negative +** nArg parameter is a better match than a function implementation with +** a negative nArg. ^A function where the preferred text encoding +** matches the database encoding is a better +** match than a function where the encoding is different. +** ^A function where the encoding difference is between UTF16le and UTF16be +** is a closer match than a function where the encoding difference is +** between UTF8 and UTF16. +** +** ^Built-in functions may be overloaded by new application-defined functions. +** ^The first application-defined function with a given name overrides all +** built-in functions in the same [database connection] with the same name. +** ^Subsequent application-defined functions of the same name only override +** prior application-defined functions that are an exact match for the +** number of parameters and preferred encoding. +** +** ^An application-defined function is permitted to call other +** SQLite interfaces. However, such calls must not +** close the database connection nor finalize or reset the prepared +** statement in which the function is running. +*/ +SQLITE_API int sqlite3_create_function( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +SQLITE_API int sqlite3_create_function16( + sqlite3 *db, + const void *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Deprecated Functions +** DEPRECATED +** +** These functions are [deprecated]. In order to maintain +** backwards compatibility with older code, these functions continue +** to be supported. However, new applications should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you what they do. +*/ +#ifndef SQLITE_OMIT_DEPRECATED +SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*); +SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); +SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void); +SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); +SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); +#endif + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [protected sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work only with [protected sqlite3_value] objects. +** Any attempt to use these routines on an [unprotected sqlite3_value] +** object results in undefined behavior. +** +** ^These routines work just like the corresponding [column access functions] +** except that these routines take a single [protected sqlite3_value] object +** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. +** +** ^The sqlite3_value_text16() interface extracts a UTF-16 string +** in the native byte-order of the host machine. ^The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF-16 strings as big-endian and little-endian respectively. +** +** ^(The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words, if the value is a string that looks like a number) +** then the conversion is performed. Otherwise no conversion occurs. +** The [SQLITE_INTEGER | datatype] after conversion is returned.)^ +** +** Please pay particular attention to the fact that the pointer returned +** from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the [sqlite3_value*] parameters. +*/ +SQLITE_API const void *sqlite3_value_blob(sqlite3_value*); +SQLITE_API int sqlite3_value_bytes(sqlite3_value*); +SQLITE_API int sqlite3_value_bytes16(sqlite3_value*); +SQLITE_API double sqlite3_value_double(sqlite3_value*); +SQLITE_API int sqlite3_value_int(sqlite3_value*); +SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*); +SQLITE_API const void *sqlite3_value_text16(sqlite3_value*); +SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*); +SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*); +SQLITE_API int sqlite3_value_type(sqlite3_value*); +SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context +** +** Implementions of aggregate SQL functions use this +** routine to allocate memory for storing their state. +** +** ^The first time the sqlite3_aggregate_context(C,N) routine is called +** for a particular aggregate function, SQLite +** allocates N of memory, zeroes out that memory, and returns a pointer +** to the new memory. ^On second and subsequent calls to +** sqlite3_aggregate_context() for the same aggregate function instance, +** the same buffer is returned. Sqlite3_aggregate_context() is normally +** called once for each invocation of the xStep callback and then one +** last time when the xFinal callback is invoked. ^(When no rows match +** an aggregate query, the xStep() callback of the aggregate function +** implementation is never called and xFinal() is called exactly once. +** In those cases, sqlite3_aggregate_context() might be called for the +** first time from within xFinal().)^ +** +** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer if N is +** less than or equal to zero or if a memory allocate error occurs. +** +** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is +** determined by the N parameter on first successful call. Changing the +** value of N in subsequent call to sqlite3_aggregate_context() within +** the same aggregate function instance will not resize the memory +** allocation.)^ +** +** ^SQLite automatically frees the memory allocated by +** sqlite3_aggregate_context() when the aggregate query concludes. +** +** The first parameter must be a copy of the +** [sqlite3_context | SQL function context] that is the first parameter +** to the xStep or xFinal callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions +** +** ^The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. +** +** This routine must be called from the same thread in which +** the application-defined function is running. +*/ +SQLITE_API void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Database Connection For Functions +** +** ^The sqlite3_context_db_handle() interface returns a copy of +** the pointer to the [database connection] (the 1st parameter) +** of the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. +*/ +SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data +** +** The following two functions may be used by scalar SQL functions to +** associate metadata with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated metadata may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** metadata associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. ^If no metadata has been ever +** been set for the Nth argument of the function, or if the corresponding +** function parameter has changed since the meta-data was set, +** then sqlite3_get_auxdata() returns a NULL pointer. +** +** ^The sqlite3_set_auxdata() interface saves the metadata +** pointed to by its 3rd parameter as the metadata for the N-th +** argument of the application-defined function. Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** ^If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the metadata when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. +** +** SQLite is free to call the destructor and drop metadata on any +** parameter of any function at any time. ^The only guarantee is that +** the destructor will be called before the metadata is dropped. +** +** ^(In practice, metadata is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and [parameters].)^ +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); +SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior +** +** These are special values for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. ^If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. ^The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the [parameter binding] family of +** functions used to bind values to host parameters in prepared statements. +** Refer to the [SQL parameter] documentation for additional information. +** +** ^The sqlite3_result_blob() interface sets the result from +** an application-defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** +** ^The sqlite3_result_zeroblob() interfaces set the result of +** the application-defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** ^The sqlite3_result_double() interface sets the result from +** an application-defined function to be a floating point value specified +** by its 2nd argument. +** +** ^The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** ^SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. ^SQLite interprets the error +** message string from sqlite3_result_error() as UTF-8. ^SQLite +** interprets the string from sqlite3_result_error16() as UTF-16 in native +** byte order. ^If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** ^If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** ^The sqlite3_result_error() and sqlite3_result_error16() +** routines make a private copy of the error message text before +** they return. Hence, the calling function can deallocate or +** modify the text after they return without harm. +** ^The sqlite3_result_error_code() function changes the error code +** returned by SQLite as a result of an error in a function. ^By default, +** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() +** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. +** +** ^The sqlite3_result_toobig() interface causes SQLite to throw an error +** indicating that a string or BLOB is too long to represent. +** +** ^The sqlite3_result_nomem() interface causes SQLite to throw an error +** indicating that a memory allocation failed. +** +** ^The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** ^The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** ^The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** ^The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** ^SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** ^If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** ^If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** ^If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or BLOB result when it has +** finished using that result. +** ^If the 4th parameter to the sqlite3_result_text* interfaces or to +** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite +** assumes that the text or BLOB result is in constant space and does not +** copy the content of the parameter nor call a destructor on the content +** when it has finished using that result. +** ^If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** ^The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the +** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that the [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** ^A [protected sqlite3_value] object may always be used where an +** [unprotected sqlite3_value] object is required, so either +** kind of [sqlite3_value] object can be used with this interface. +** +** If these routines are called from within the different thread +** than the one containing the application-defined function that received +** the [sqlite3_context] pointer, the results are undefined. +*/ +SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +SQLITE_API void sqlite3_result_double(sqlite3_context*, double); +SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int); +SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int); +SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*); +SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*); +SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int); +SQLITE_API void sqlite3_result_int(sqlite3_context*, int); +SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +SQLITE_API void sqlite3_result_null(sqlite3_context*); +SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences +** +** These functions are used to add new collation sequences to the +** [database connection] specified as the first argument. +** +** ^The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). ^In all cases +** the name is passed as the second function argument. +** +** ^The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian, or UTF-16 big-endian, respectively. ^The +** third argument might also be [SQLITE_UTF16] to indicate that the routine +** expects pointers to be UTF-16 strings in the native byte order, or the +** argument can be [SQLITE_UTF16_ALIGNED] if the +** the routine expects pointers to 16-bit word aligned strings +** of UTF-16 in the native byte order. +** +** A pointer to the user supplied routine must be passed as the fifth +** argument. ^If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** ^Each time the application supplied function is invoked, it is passed +** as its first parameter a copy of the void* passed as the fourth argument +** to sqlite3_create_collation() or sqlite3_create_collation16(). +** +** ^The remaining arguments to the application-supplied routine are two strings, +** each represented by a (length, data) pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. The application defined collation routine should +** return negative, zero or positive if the first string is less than, +** equal to, or greater than the second string. i.e. (STRING1 - STRING2). +** +** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** except that it takes an extra argument which is a destructor for +** the collation. ^The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** ^Collations are destroyed when they are overridden by later calls to the +** collation creation functions or when the [database connection] is closed +** using [sqlite3_close()]. +** +** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. +*/ +SQLITE_API int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +SQLITE_API int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +SQLITE_API int sqlite3_create_collation16( + sqlite3*, + const void *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks +** +** ^To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** [database connection] to be invoked whenever an undefined collation +** sequence is required. +** +** ^If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. ^If sqlite3_collation_needed16() is used, +** the names are passed as UTF-16 in machine native byte order. +** ^A call to either function replaces the existing collation-needed callback. +** +** ^(When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). The second argument is the database +** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], +** or [SQLITE_UTF16LE], indicating the most desirable form of the collation +** sequence function required. The fourth parameter is the name of the +** required collation sequence.)^ +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +SQLITE_API int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +SQLITE_API int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +#if SQLITE_HAS_CODEC +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +SQLITE_API int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +SQLITE_API int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** Specify the activation key for a SEE database. Unless +** activated, none of the SEE routines will work. +*/ +SQLITE_API void sqlite3_activate_see( + const char *zPassPhrase /* Activation phrase */ +); +#endif + +#ifdef SQLITE_ENABLE_CEROD +/* +** Specify the activation key for a CEROD database. Unless +** activated, none of the CEROD routines will work. +*/ +SQLITE_API void sqlite3_activate_cerod( + const char *zPassPhrase /* Activation phrase */ +); +#endif + +/* +** CAPI3REF: Suspend Execution For A Short Time +** +** ^The sqlite3_sleep() function causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** ^If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. ^The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** ^SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. +*/ +SQLITE_API int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files +** +** ^(If this global variable is made to point to a string which is +** the name of a folder (a.k.a. directory), then all temporary files +** created by SQLite when using a built-in [sqlite3_vfs | VFS] +** will be placed in that directory.)^ ^If this variable +** is a NULL pointer, then SQLite performs a search for an appropriate +** temporary file directory. +** +** It is not safe to read or modify this variable in more than one +** thread at a time. It is not safe to read or modify this variable +** if a [database connection] is being used at the same time in a separate +** thread. +** It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been called and that this variable remain unchanged +** thereafter. +** +** ^The [temp_store_directory pragma] may modify this variable and cause +** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, +** the [temp_store_directory pragma] always assumes that any string +** that this variable points to is held in memory obtained from +** [sqlite3_malloc] and the pragma may attempt to free that memory +** using [sqlite3_free]. +** Hence, if this variable is modified directly, either it should be +** made NULL or made to point to memory obtained from [sqlite3_malloc] +** or else the use of the [temp_store_directory pragma] should be avoided. +*/ +SQLITE_API char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test For Auto-Commit Mode +** KEYWORDS: {autocommit mode} +** +** ^The sqlite3_get_autocommit() interface returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. ^Autocommit mode is on by default. +** ^Autocommit mode is disabled by a [BEGIN] statement. +** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. +** +** If certain kinds of errors occur on a statement within a multi-statement +** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. The only way to +** find out whether SQLite automatically rolled back the transaction after +** an error is to use this function. +** +** If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. +*/ +SQLITE_API int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement +** +** ^The sqlite3_db_handle interface returns the [database connection] handle +** to which a [prepared statement] belongs. ^The [database connection] +** returned by sqlite3_db_handle is the same [database connection] +** that was the first argument +** to the [sqlite3_prepare_v2()] call (or its variants) that was used to +** create the statement in the first place. +*/ +SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + +/* +** CAPI3REF: Find the next prepared statement +** +** ^This interface returns a pointer to the next [prepared statement] after +** pStmt associated with the [database connection] pDb. ^If pStmt is NULL +** then this interface returns a pointer to the first prepared statement +** associated with the database connection pDb. ^If no prepared statement +** satisfies the conditions of this routine, it returns NULL. +** +** The [database connection] pointer D in a call to +** [sqlite3_next_stmt(D,S)] must refer to an open database +** connection and in particular must not be a NULL pointer. +*/ +SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks +** +** ^The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is [COMMIT | committed]. +** ^Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** ^The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. +** ^Any callback set by a previous call to sqlite3_rollback_hook() +** for the same database connection is overridden. +** ^The pArg argument is passed through to the callback. +** ^If the callback on a commit hook function returns non-zero, +** then the commit is converted into a rollback. +** +** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions +** return the P argument from the previous call of the same function +** on the same [database connection] D, or NULL for +** the first call for each function on D. +** +** The callback implementation must not do anything that will modify +** the database connection that invoked the callback. Any actions +** to modify the database connection must be deferred until after the +** completion of the [sqlite3_step()] call that triggered the commit +** or rollback hook in the first place. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +** ^Registering a NULL function disables the callback. +** +** ^When the commit hook callback routine returns zero, the [COMMIT] +** operation is allowed to continue normally. ^If the commit hook +** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK]. +** ^The rollback hook is invoked on a rollback that results from a commit +** hook returning non-zero, just as it would be with any other rollback. +** +** ^For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** ^The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** ^The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** +** See also the [sqlite3_update_hook()] interface. +*/ +SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks +** +** ^The sqlite3_update_hook() interface registers a callback function +** with the [database connection] identified by the first argument +** to be invoked whenever a row is updated, inserted or deleted. +** ^Any callback set by a previous call to this function +** for the same database connection is overridden. +** +** ^The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** ^The first argument to the callback is a copy of the third argument +** to sqlite3_update_hook(). +** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], +** or [SQLITE_UPDATE], depending on the operation that caused the callback +** to be invoked. +** ^The third and fourth arguments to the callback contain pointers to the +** database and table name containing the affected row. +** ^The final callback parameter is the [rowid] of the row. +** ^In the case of an update, this is the [rowid] after the update takes place. +** +** ^(The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence).)^ +** +** ^In the current implementation, the update hook +** is not invoked when duplication rows are deleted because of an +** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook +** invoked when rows are deleted using the [truncate optimization]. +** The exceptions defined in this paragraph might change in a future +** release of SQLite. +** +** The update hook implementation must not do anything that will modify +** the database connection that invoked the update hook. Any actions +** to modify the database connection must be deferred until after the +** completion of the [sqlite3_step()] call that triggered the update hook. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +** ^The sqlite3_update_hook(D,C,P) function +** returns the P argument from the previous call +** on the same [database connection] D, or NULL for +** the first call on D. +** +** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()] +** interfaces. +*/ +SQLITE_API void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache +** KEYWORDS: {shared cache} +** +** ^(This routine enables or disables the sharing of the database cache +** and schema data structures between [database connection | connections] +** to the same database. Sharing is enabled if the argument is true +** and disabled if the argument is false.)^ +** +** ^Cache sharing is enabled and disabled for an entire process. +** This is a change as of SQLite version 3.5.0. In prior versions of SQLite, +** sharing was enabled or disabled for each thread separately. +** +** ^(The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** Existing database connections continue use the sharing mode +** that was in effect at the time they were opened.)^ +** +** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled +** successfully. An [error code] is returned otherwise.)^ +** +** ^Shared cache is disabled by default. But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +** +** See Also: [SQLite Shared-Cache Mode] +*/ +SQLITE_API int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory +** +** ^The sqlite3_release_memory() interface attempts to free N bytes +** of heap memory by deallocating non-essential memory allocations +** held by the database library. Memory used to cache database +** pages to improve performance is an example of non-essential memory. +** ^sqlite3_release_memory() returns the number of bytes actually freed, +** which might be more or less than the amount requested. +*/ +SQLITE_API int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size +** +** ^The sqlite3_soft_heap_limit() interface places a "soft" limit +** on the amount of heap memory that may be allocated by SQLite. +** ^If an internal allocation is requested that would exceed the +** soft heap limit, [sqlite3_release_memory()] is invoked one or +** more times to free up some space before the allocation is performed. +** +** ^The limit is called "soft" because if [sqlite3_release_memory()] +** cannot free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** ^A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** ^The default value for the soft heap limit is zero. +** +** ^(SQLite makes a best effort to honor the soft heap limit. +** But if the soft heap limit cannot be honored, execution will +** continue without error or notification.)^ This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +*/ +SQLITE_API void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table +** +** ^This routine returns metadata about a specific column of a specific +** database table accessible using the [database connection] handle +** passed as the first function argument. +** +** ^The column is identified by the second, third and fourth parameters to +** this function. ^The second parameter is either the name of the database +** (i.e. "main", "temp", or an attached database) containing the specified +** table or NULL. ^If it is NULL, then all attached databases are searched +** for the table using the same algorithm used by the database engine to +** resolve unqualified table references. +** +** ^The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** ^Metadata is returned by writing to the memory locations passed as the 5th +** and subsequent parameters to this function. ^Any of these arguments may be +** NULL, in which case the corresponding element of metadata is omitted. +** +** ^(
+** +**
Parameter Output
Type
Description +** +**
5th const char* Data type +**
6th const char* Name of default collation sequence +**
7th int True if column has a NOT NULL constraint +**
8th int True if column is part of the PRIMARY KEY +**
9th int True if column is [AUTOINCREMENT] +**
+**
)^ +** +** ^The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any SQLite API function. +** +** ^If the specified table is actually a view, an [error code] is returned. +** +** ^If the specified column is "rowid", "oid" or "_rowid_" and an +** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. ^(If there is no +** explicitly declared [INTEGER PRIMARY KEY] column, then the output +** parameters are set as follows: +** +**
+**     data type: "INTEGER"
+**     collation sequence: "BINARY"
+**     not null: 0
+**     primary key: 1
+**     auto increment: 0
+** 
)^ +** +** ^(This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an [error code] is returned and an error message left +** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^ +** +** ^This API is only available if the library was compiled with the +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined. +*/ +SQLITE_API int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension +** +** ^This interface loads an SQLite extension library from the named file. +** +** ^The sqlite3_load_extension() interface attempts to load an +** SQLite extension library contained in the file zFile. +** +** ^The entry point is zProc. +** ^zProc may be 0, in which case the name of the entry point +** defaults to "sqlite3_extension_init". +** ^The sqlite3_load_extension() interface returns +** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** ^If an error occurs and pzErrMsg is not 0, then the +** [sqlite3_load_extension()] interface shall attempt to +** fill *pzErrMsg with error message text stored in memory +** obtained from [sqlite3_malloc()]. The calling function +** should free this memory by calling [sqlite3_free()]. +** +** ^Extension loading must be enabled using +** [sqlite3_enable_load_extension()] prior to calling this API, +** otherwise an error will be returned. +** +** See also the [load_extension() SQL function]. +*/ +SQLITE_API int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading +** +** ^So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following API +** is provided to turn the [sqlite3_load_extension()] mechanism on and off. +** +** ^Extension loading is off by default. See ticket #1863. +** ^Call the sqlite3_enable_load_extension() routine with onoff==1 +** to turn extension loading on and call it with onoff==0 to turn +** it back off again. +*/ +SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Automatically Load An Extensions +** +** ^This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new [database connections]. +** +** ^(This routine stores a pointer to the extension entry point +** in an array that is obtained from [sqlite3_malloc()]. That memory +** is deallocated by [sqlite3_reset_auto_extension()].)^ +** +** ^This function registers an extension entry point that is +** automatically invoked whenever a new [database connection] +** is opened using [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()]. +** ^Duplicate extensions are detected so calling this routine +** multiple times with the same extension is harmless. +** ^Automatic extensions apply across all threads. +*/ +SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void)); + +/* +** CAPI3REF: Reset Automatic Extension Loading +** +** ^(This function disables all previously registered automatic +** extensions. It undoes the effect of all prior +** [sqlite3_auto_extension()] calls.)^ +** +** ^This function disables automatic extensions in all threads. +*/ +SQLITE_API void sqlite3_reset_auto_extension(void); + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** CAPI3REF: Virtual Table Object +** KEYWORDS: sqlite3_module {virtual table module} +** EXPERIMENTAL +** +** This structure, sometimes called a a "virtual table module", +** defines the implementation of a [virtual tables]. +** This structure consists mostly of methods for the module. +** +** ^A virtual table module is created by filling in a persistent +** instance of this structure and passing a pointer to that instance +** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. +** ^The registration remains valid until it is replaced by a different +** module or until the [database connection] closes. The content +** of this structure must not change while it is registered with +** any database connection. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** CAPI3REF: Virtual Table Indexing Information +** KEYWORDS: sqlite3_index_info +** EXPERIMENTAL +** +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the [xBestIndex] +** method of a [virtual table module]. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** ^(The aConstraint[] array records WHERE clause constraints of the form: +** +**
column OP expr
+** +** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is +** stored in aConstraint[].op.)^ ^(The index of the column is stored in +** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot.)^ +** +** ^The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** ^The aConstraint[] array only reports WHERE clause terms that are +** relevant to the particular virtual table being queried. +** +** ^Information about the ORDER BY clause is stored in aOrderBy[]. +** ^Each term of aOrderBy records a column of the ORDER BY clause. +** +** The [xBestIndex] method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. ^If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite.)^ +** +** ^The idxNum and idxPtr values are recorded and passed into the +** [xFilter] method. +** ^[sqlite3_free()] is used to free idxPtr if and only if +** needToFreeIdxPtr is true. +** +** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** ^The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** CAPI3REF: Register A Virtual Table Implementation +** EXPERIMENTAL +** +** ^These routines are used to register a new [virtual table module] name. +** ^Module names must be registered before +** creating a new [virtual table] using the module and before using a +** preexisting [virtual table] for the module. +** +** ^The module name is registered on the [database connection] specified +** by the first parameter. ^The name of the module is given by the +** second parameter. ^The third parameter is a pointer to +** the implementation of the [virtual table module]. ^The fourth +** parameter is an arbitrary client data pointer that is passed through +** into the [xCreate] and [xConnect] methods of the virtual table module +** when a new virtual table is be being created or reinitialized. +** +** ^The sqlite3_create_module_v2() interface has a fifth parameter which +** is a pointer to a destructor for the pClientData. ^SQLite will +** invoke the destructor function (if it is not NULL) when SQLite +** no longer needs the pClientData pointer. ^The sqlite3_create_module() +** interface is equivalent to sqlite3_create_module_v2() with a NULL +** destructor. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *p, /* Methods for the module */ + void *pClientData /* Client data for xCreate/xConnect */ +); +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *p, /* Methods for the module */ + void *pClientData, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** CAPI3REF: Virtual Table Instance Object +** KEYWORDS: sqlite3_vtab +** EXPERIMENTAL +** +** Every [virtual table module] implementation uses a subclass +** of this object to describe a particular instance +** of the [virtual table]. Each subclass will +** be tailored to the specific needs of the module implementation. +** The purpose of this superclass is to define certain fields that are +** common to all module implementations. +** +** ^Virtual tables methods can set an error message by assigning a +** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should +** take care that any prior string is freed by a call to [sqlite3_free()] +** prior to assigning a new string to zErrMsg. ^After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* NO LONGER USED */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** CAPI3REF: Virtual Table Cursor Object +** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} +** EXPERIMENTAL +** +** Every [virtual table module] implementation uses a subclass of the +** following structure to describe cursors that point into the +** [virtual table] and are used +** to loop through the virtual table. Cursors are created using the +** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed +** by the [sqlite3_module.xClose | xClose] method. Cursors are used +** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods +** of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** CAPI3REF: Declare The Schema Of A Virtual Table +** EXPERIMENTAL +** +** ^The [xCreate] and [xConnect] methods of a +** [virtual table module] call this interface +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL); + +/* +** CAPI3REF: Overload A Function For A Virtual Table +** EXPERIMENTAL +** +** ^(Virtual tables can provide alternative implementations of functions +** using the [xFindFunction] method of the [virtual table module]. +** But global versions of those functions +** must exist in order to be overloaded.)^ +** +** ^(This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created.)^ ^The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a placeholder function that can be overloaded +** by a [virtual table]. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB +** KEYWORDS: {BLOB handle} {BLOB handles} +** +** An instance of this object represents an open BLOB on which +** [sqlite3_blob_open | incremental BLOB I/O] can be performed. +** ^Objects of this type are created by [sqlite3_blob_open()] +** and destroyed by [sqlite3_blob_close()]. +** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the BLOB. +** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O +** +** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located +** in row iRow, column zColumn, table zTable in database zDb; +** in other words, the same BLOB that would be selected by: +** +**
+**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** 
)^ +** +** ^If the flags parameter is non-zero, then the BLOB is opened for read +** and write access. ^If it is zero, the BLOB is opened for read access. +** ^It is not possible to open a column that is part of an index or primary +** key for writing. ^If [foreign key constraints] are enabled, it is +** not possible to open a column that is part of a [child key] for writing. +** +** ^Note that the database name is not the filename that contains +** the database but rather the symbolic name of the database that +** appears after the AS keyword when the database is connected using [ATTACH]. +** ^For the main database file, the database name is "main". +** ^For TEMP tables, the database name is "temp". +** +** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written +** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set +** to be a null pointer.)^ +** ^This function sets the [database connection] error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related +** functions. ^Note that the *ppBlob variable is always initialized in a +** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob +** regardless of the success or failure of this routine. +** +** ^(If the row that a BLOB handle points to is modified by an +** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects +** then the BLOB handle is marked as "expired". +** This is true if any column of the row is changed, even a column +** other than the one the BLOB handle is open on.)^ +** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for +** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. +** ^(Changes written into a BLOB prior to the BLOB expiring are not +** rolled back by the expiration of the BLOB. Such changes will eventually +** commit if the transaction continues to completion.)^ +** +** ^Use the [sqlite3_blob_bytes()] interface to determine the size of +** the opened blob. ^The size of a blob may not be changed by this +** interface. Use the [UPDATE] SQL command to change the size of a +** blob. +** +** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces +** and the built-in [zeroblob] SQL function can be used, if desired, +** to create an empty, zero-filled blob in which to read or write using +** this interface. +** +** To avoid a resource leak, every open [BLOB handle] should eventually +** be released by a call to [sqlite3_blob_close()]. +*/ +SQLITE_API int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle +** +** ^Closes an open [BLOB handle]. +** +** ^Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in [autocommit mode]. +** ^If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. +** +** ^(Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. Any errors that occur during +** closing are reported as a non-zero return value.)^ +** +** ^(The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed.)^ +** +** ^Calling this routine with a null pointer (such as would be returned +** by a failed call to [sqlite3_blob_open()]) is a harmless no-op. +*/ +SQLITE_API int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB +** +** ^Returns the size in bytes of the BLOB accessible via the +** successfully opened [BLOB handle] in its only argument. ^The +** incremental blob I/O routines can only read or overwriting existing +** blob content; they cannot change the size of a blob. +** +** This routine only works on a [BLOB handle] which has been created +** by a prior successful call to [sqlite3_blob_open()] and which has not +** been closed by [sqlite3_blob_close()]. Passing any other pointer in +** to this routine results in undefined and probably undesirable behavior. +*/ +SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally +** +** ^(This function is used to read data from an open [BLOB handle] into a +** caller-supplied buffer. N bytes of data are copied into buffer Z +** from the open BLOB, starting at offset iOffset.)^ +** +** ^If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is +** less than zero, [SQLITE_ERROR] is returned and no data is read. +** ^The size of the blob (and hence the maximum value of N+iOffset) +** can be determined using the [sqlite3_blob_bytes()] interface. +** +** ^An attempt to read from an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. +** +** ^(On success, sqlite3_blob_read() returns SQLITE_OK. +** Otherwise, an [error code] or an [extended error code] is returned.)^ +** +** This routine only works on a [BLOB handle] which has been created +** by a prior successful call to [sqlite3_blob_open()] and which has not +** been closed by [sqlite3_blob_close()]. Passing any other pointer in +** to this routine results in undefined and probably undesirable behavior. +** +** See also: [sqlite3_blob_write()]. +*/ +SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally +** +** ^This function is used to write data into an open [BLOB handle] from a +** caller-supplied buffer. ^N bytes of data are copied from the buffer Z +** into the open BLOB, starting at offset iOffset. +** +** ^If the [BLOB handle] passed as the first argument was not opened for +** writing (the flags parameter to [sqlite3_blob_open()] was zero), +** this function returns [SQLITE_READONLY]. +** +** ^This function may only modify the contents of the BLOB; it is +** not possible to increase the size of a BLOB using this API. +** ^If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is written. ^If N is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** The size of the BLOB (and hence the maximum value of N+iOffset) +** can be determined using the [sqlite3_blob_bytes()] interface. +** +** ^An attempt to write to an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred +** before the [BLOB handle] expired are not rolled back by the +** expiration of the handle, though of course those changes might +** have been overwritten by the statement that expired the BLOB handle +** or by other independent statements. +** +** ^(On success, sqlite3_blob_write() returns SQLITE_OK. +** Otherwise, an [error code] or an [extended error code] is returned.)^ +** +** This routine only works on a [BLOB handle] which has been created +** by a prior successful call to [sqlite3_blob_open()] and which has not +** been closed by [sqlite3_blob_close()]. Passing any other pointer in +** to this routine results in undefined and probably undesirable behavior. +** +** See also: [sqlite3_blob_read()]. +*/ +SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most SQLite builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. +** ^Names are case sensitive. +** ^Names are zero-terminated UTF-8 strings. +** ^If there is no match, a NULL pointer is returned. +** ^If zVfsName is NULL then the default VFS is returned. +** +** ^New VFSes are registered with sqlite3_vfs_register(). +** ^Each new VFS becomes the default VFS if the makeDflt flag is set. +** ^The same VFS can be registered multiple times without injury. +** ^To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. If two different VFSes with the +** same name are registered, the behavior is undefined. If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** ^Unregister a VFS with the sqlite3_vfs_unregister() interface. +** ^(If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary.)^ +*/ +SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. ^(The following +** implementations are available in the SQLite core: +** +**
    +**
  • SQLITE_MUTEX_OS2 +**
  • SQLITE_MUTEX_PTHREAD +**
  • SQLITE_MUTEX_W32 +**
  • SQLITE_MUTEX_NOOP +**
)^ +** +** ^The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. ^The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on OS/2, Unix, and Windows. +** +** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. In this case the +** application must supply a custom mutex implementation using the +** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function +** before calling sqlite3_initialize() or any other public sqlite3_ +** function that calls sqlite3_initialize().)^ +** +** ^The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. ^If it returns NULL +** that means that a mutex could not be allocated. ^SQLite +** will unwind its stack and return an error. ^(The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
  • SQLITE_MUTEX_STATIC_LRU2 +**
)^ +** +** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) +** cause sqlite3_mutex_alloc() to create +** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. ^SQLite will only request a recursive mutex in +** cases where it really needs one. ^If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other +** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return +** a pointer to a static preexisting mutex. ^Six static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. ^But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +** +** ^The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. ^SQLite is careful to deallocate every +** dynamic mutex that it allocates. The dynamic mutexes must not be in +** use when they are deallocated. Attempting to deallocate a static +** mutex results in undefined behavior. ^SQLite never deallocates +** a static mutex. +** +** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. ^If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] +** upon successful entry. ^(Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter.)^ ^(If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** SQLite will never exhibit +** such behavior in its own use of mutexes.)^ +** +** ^(Some systems (for example, Windows 95) do not support the operation +** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() +** will always return SQLITE_BUSY. The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^ +** +** ^The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. ^(The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. SQLite will +** never do either.)^ +** +** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or +** sqlite3_mutex_leave() is a NULL pointer, then all three routines +** behave as no-ops. +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int); +SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*); +SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*); +SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); +SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Methods Object +** EXPERIMENTAL +** +** An instance of this structure defines the low-level routines +** used to allocate and use mutexes. +** +** Usually, the default mutex implementations provided by SQLite are +** sufficient, however the user has the option of substituting a custom +** implementation for specialized deployments or systems for which SQLite +** does not provide a suitable implementation. In this case, the user +** creates and populates an instance of this structure to pass +** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. +** Additionally, an instance of this structure can be used as an +** output variable when querying the system for the current mutex +** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. +** +** ^The xMutexInit method defined by this structure is invoked as +** part of system initialization by the sqlite3_initialize() function. +** ^The xMutexInit routine is calle by SQLite exactly once for each +** effective call to [sqlite3_initialize()]. +** +** ^The xMutexEnd method defined by this structure is invoked as +** part of system shutdown by the sqlite3_shutdown() function. The +** implementation of this method is expected to release all outstanding +** resources obtained by the mutex methods implementation, especially +** those obtained by the xMutexInit method. ^The xMutexEnd() +** interface is invoked exactly once for each call to [sqlite3_shutdown()]. +** +** ^(The remaining seven methods defined by this structure (xMutexAlloc, +** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and +** xMutexNotheld) implement the following interfaces (respectively): +** +**
    +**
  • [sqlite3_mutex_alloc()]
  • +**
  • [sqlite3_mutex_free()]
  • +**
  • [sqlite3_mutex_enter()]
  • +**
  • [sqlite3_mutex_try()]
  • +**
  • [sqlite3_mutex_leave()]
  • +**
  • [sqlite3_mutex_held()]
  • +**
  • [sqlite3_mutex_notheld()]
  • +**
)^ +** +** The only difference is that the public sqlite3_XXX functions enumerated +** above silently ignore any invocations that pass a NULL pointer instead +** of a valid mutex handle. The implementations of the methods defined +** by this structure are not required to handle this case, the results +** of passing a NULL pointer instead of a valid mutex handle are undefined +** (i.e. it is acceptable to provide an implementation that segfaults if +** it is passed a NULL pointer). +** +** The xMutexInit() method must be threadsafe. ^It must be harmless to +** invoke xMutexInit() mutiple times within the same process and without +** intervening calls to xMutexEnd(). Second and subsequent calls to +** xMutexInit() must be no-ops. +** +** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] +** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory +** allocation for a static mutex. ^However xMutexAlloc() may use SQLite +** memory allocation for a fast or recursive mutex. +** +** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is +** called, but only if the prior call to xMutexInit returned SQLITE_OK. +** If xMutexInit fails in any way, it is expected to clean up after itself +** prior to returning. +*/ +typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; +struct sqlite3_mutex_methods { + int (*xMutexInit)(void); + int (*xMutexEnd)(void); + sqlite3_mutex *(*xMutexAlloc)(int); + void (*xMutexFree)(sqlite3_mutex *); + void (*xMutexEnter)(sqlite3_mutex *); + int (*xMutexTry)(sqlite3_mutex *); + void (*xMutexLeave)(sqlite3_mutex *); + int (*xMutexHeld)(sqlite3_mutex *); + int (*xMutexNotheld)(sqlite3_mutex *); +}; + +/* +** CAPI3REF: Mutex Verification Routines +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. ^The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. ^The SQLite core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. ^External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** ^These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. +** +** ^The implementation is not required to provided versions of these +** routines that actually work. If the implementation does not provide working +** versions of these routines, it should at least provide stubs that always +** return true so that one does not get spurious assertion failures. +** +** ^If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. ^The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +#ifndef NDEBUG +SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); +SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); +#endif + +/* +** CAPI3REF: Mutex Types +** +** The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. +** +** The set of static mutexes may change from one SQLite release to the +** next. Applications that override the built-in mutex logic must be +** prepared to accommodate additional static mutexes. +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */ +#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ +#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */ + +/* +** CAPI3REF: Retrieve the mutex for a database connection +** +** ^This interface returns a pointer the [sqlite3_mutex] object that +** serializes access to the [database connection] given in the argument +** when the [threading mode] is Serialized. +** ^If the [threading mode] is Single-thread or Multi-thread then this +** routine returns a NULL pointer. +*/ +SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*); + +/* +** CAPI3REF: Low-Level Control Of Database Files +** +** ^The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. ^The +** name of the database "main" for the main database or "temp" for the +** TEMP database, or the name that appears after the AS keyword for +** databases that are added using the [ATTACH] SQL command. +** ^A NULL pointer can be used in place of "main" to refer to the +** main database file. +** ^The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. ^The return value of the xFileControl +** method becomes the return value of this routine. +** +** ^If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. ^This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. The underlying xFileControl method might +** also return SQLITE_ERROR. There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** CAPI3REF: Testing Interface +** +** ^The sqlite3_test_control() interface is used to read out internal +** state of SQLite and to inject faults into SQLite for testing +** purposes. ^The first parameter is an operation code that determines +** the number, meaning, and operation of all subsequent parameters. +** +** This interface is not for use by applications. It exists solely +** for verifying the correct operation of the SQLite library. Depending +** on how the SQLite library is compiled, this interface might not exist. +** +** The details of the operation codes, their meanings, the parameters +** they take, and what they do are all subject to change without notice. +** Unlike most of the SQLite API, this function is not guaranteed to +** operate consistently from one release to the next. +*/ +SQLITE_API int sqlite3_test_control(int op, ...); + +/* +** CAPI3REF: Testing Interface Operation Codes +** +** These constants are the valid operation code parameters used +** as the first argument to [sqlite3_test_control()]. +** +** These parameters and their meanings are subject to change +** without notice. These values are for testing purposes only. +** Applications should not use any of these parameters or the +** [sqlite3_test_control()] interface. +*/ +#define SQLITE_TESTCTRL_FIRST 5 +#define SQLITE_TESTCTRL_PRNG_SAVE 5 +#define SQLITE_TESTCTRL_PRNG_RESTORE 6 +#define SQLITE_TESTCTRL_PRNG_RESET 7 +#define SQLITE_TESTCTRL_BITVEC_TEST 8 +#define SQLITE_TESTCTRL_FAULT_INSTALL 9 +#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 +#define SQLITE_TESTCTRL_PENDING_BYTE 11 +#define SQLITE_TESTCTRL_ASSERT 12 +#define SQLITE_TESTCTRL_ALWAYS 13 +#define SQLITE_TESTCTRL_RESERVE 14 +#define SQLITE_TESTCTRL_OPTIMIZATIONS 15 +#define SQLITE_TESTCTRL_ISKEYWORD 16 +#define SQLITE_TESTCTRL_LAST 16 + +/* +** CAPI3REF: SQLite Runtime Status +** EXPERIMENTAL +** +** ^This interface is used to retrieve runtime status information +** about the preformance of SQLite, and optionally to reset various +** highwater marks. ^The first argument is an integer code for +** the specific parameter to measure. ^(Recognized integer codes +** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^ +** ^The current value of the parameter is returned into *pCurrent. +** ^The highest recorded value is returned in *pHighwater. ^If the +** resetFlag is true, then the highest record value is reset after +** *pHighwater is written. ^(Some parameters do not record the highest +** value. For those parameters +** nothing is written into *pHighwater and the resetFlag is ignored.)^ +** ^(Other parameters record only the highwater mark and not the current +** value. For these latter parameters nothing is written into *pCurrent.)^ +** +** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a +** non-zero [error code] on failure. +** +** This routine is threadsafe but is not atomic. This routine can be +** called while other threads are running the same or different SQLite +** interfaces. However the values returned in *pCurrent and +** *pHighwater reflect the status of SQLite at different points in time +** and it is possible that another thread might change the parameter +** in between the times when *pCurrent and *pHighwater are written. +** +** See also: [sqlite3_db_status()] +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); + + +/* +** CAPI3REF: Status Parameters +** EXPERIMENTAL +** +** These integer constants designate various run-time status parameters +** that can be returned by [sqlite3_status()]. +** +**
+** ^(
SQLITE_STATUS_MEMORY_USED
+**
This parameter is the current amount of memory checked out +** using [sqlite3_malloc()], either directly or indirectly. The +** figure includes calls made to [sqlite3_malloc()] by the application +** and internal memory usage by the SQLite library. Scratch memory +** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache +** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in +** this parameter. The amount returned is the sum of the allocation +** sizes as reported by the xSize method in [sqlite3_mem_methods].
)^ +** +** ^(
SQLITE_STATUS_MALLOC_SIZE
+**
This parameter records the largest memory allocation request +** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their +** internal equivalents). Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
)^ +** +** ^(
SQLITE_STATUS_PAGECACHE_USED
+**
This parameter returns the number of pages used out of the +** [pagecache memory allocator] that was configured using +** [SQLITE_CONFIG_PAGECACHE]. The +** value returned is in pages, not in bytes.
)^ +** +** ^(
SQLITE_STATUS_PAGECACHE_OVERFLOW
+**
This parameter returns the number of bytes of page cache +** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE] +** buffer and where forced to overflow to [sqlite3_malloc()]. The +** returned value includes allocations that overflowed because they +** where too large (they were larger than the "sz" parameter to +** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because +** no space was left in the page cache.
)^ +** +** ^(
SQLITE_STATUS_PAGECACHE_SIZE
+**
This parameter records the largest memory allocation request +** handed to [pagecache memory allocator]. Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
)^ +** +** ^(
SQLITE_STATUS_SCRATCH_USED
+**
This parameter returns the number of allocations used out of the +** [scratch memory allocator] configured using +** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not +** in bytes. Since a single thread may only have one scratch allocation +** outstanding at time, this parameter also reports the number of threads +** using scratch memory at the same time.
)^ +** +** ^(
SQLITE_STATUS_SCRATCH_OVERFLOW
+**
This parameter returns the number of bytes of scratch memory +** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH] +** buffer and where forced to overflow to [sqlite3_malloc()]. The values +** returned include overflows because the requested allocation was too +** larger (that is, because the requested allocation was larger than the +** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer +** slots were available. +**
)^ +** +** ^(
SQLITE_STATUS_SCRATCH_SIZE
+**
This parameter records the largest memory allocation request +** handed to [scratch memory allocator]. Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
)^ +** +** ^(
SQLITE_STATUS_PARSER_STACK
+**
This parameter records the deepest parser stack. It is only +** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
)^ +**
+** +** New status parameters may be added from time to time. +*/ +#define SQLITE_STATUS_MEMORY_USED 0 +#define SQLITE_STATUS_PAGECACHE_USED 1 +#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 +#define SQLITE_STATUS_SCRATCH_USED 3 +#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 +#define SQLITE_STATUS_MALLOC_SIZE 5 +#define SQLITE_STATUS_PARSER_STACK 6 +#define SQLITE_STATUS_PAGECACHE_SIZE 7 +#define SQLITE_STATUS_SCRATCH_SIZE 8 + +/* +** CAPI3REF: Database Connection Status +** EXPERIMENTAL +** +** ^This interface is used to retrieve runtime status information +** about a single [database connection]. ^The first argument is the +** database connection object to be interrogated. ^The second argument +** is the parameter to interrogate. ^Currently, the only allowed value +** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED]. +** Additional options will likely appear in future releases of SQLite. +** +** ^The current value of the requested parameter is written into *pCur +** and the highest instantaneous value is written into *pHiwtr. ^If +** the resetFlg is true, then the highest instantaneous value is +** reset back down to the current value. +** +** See also: [sqlite3_status()] and [sqlite3_stmt_status()]. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); + +/* +** CAPI3REF: Status Parameters for database connections +** EXPERIMENTAL +** +** These constants are the available integer "verbs" that can be passed as +** the second argument to the [sqlite3_db_status()] interface. +** +** New verbs may be added in future releases of SQLite. Existing verbs +** might be discontinued. Applications should check the return code from +** [sqlite3_db_status()] to make sure that the call worked. +** The [sqlite3_db_status()] interface will return a non-zero error code +** if a discontinued or unsupported verb is invoked. +** +**
+** ^(
SQLITE_DBSTATUS_LOOKASIDE_USED
+**
This parameter returns the number of lookaside memory slots currently +** checked out.
)^ +**
+*/ +#define SQLITE_DBSTATUS_LOOKASIDE_USED 0 + + +/* +** CAPI3REF: Prepared Statement Status +** EXPERIMENTAL +** +** ^(Each prepared statement maintains various +** [SQLITE_STMTSTATUS_SORT | counters] that measure the number +** of times it has performed specific operations.)^ These counters can +** be used to monitor the performance characteristics of the prepared +** statements. For example, if the number of table steps greatly exceeds +** the number of table searches or result rows, that would tend to indicate +** that the prepared statement is using a full table scan rather than +** an index. +** +** ^(This interface is used to retrieve and reset counter values from +** a [prepared statement]. The first argument is the prepared statement +** object to be interrogated. The second argument +** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter] +** to be interrogated.)^ +** ^The current value of the requested counter is returned. +** ^If the resetFlg is true, then the counter is reset to zero after this +** interface call returns. +** +** See also: [sqlite3_status()] and [sqlite3_db_status()]. +*/ +SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); + +/* +** CAPI3REF: Status Parameters for prepared statements +** EXPERIMENTAL +** +** These preprocessor macros define integer codes that name counter +** values associated with the [sqlite3_stmt_status()] interface. +** The meanings of the various counters are as follows: +** +**
+**
SQLITE_STMTSTATUS_FULLSCAN_STEP
+**
^This is the number of times that SQLite has stepped forward in +** a table as part of a full table scan. Large numbers for this counter +** may indicate opportunities for performance improvement through +** careful use of indices.
+** +**
SQLITE_STMTSTATUS_SORT
+**
^This is the number of sort operations that have occurred. +** A non-zero value in this counter may indicate an opportunity to +** improvement performance through careful use of indices.
+** +**
+*/ +#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 +#define SQLITE_STMTSTATUS_SORT 2 + +/* +** CAPI3REF: Custom Page Cache Object +** EXPERIMENTAL +** +** The sqlite3_pcache type is opaque. It is implemented by +** the pluggable module. The SQLite core has no knowledge of +** its size or internal structure and never deals with the +** sqlite3_pcache object except by holding and passing pointers +** to the object. +** +** See [sqlite3_pcache_methods] for additional information. +*/ +typedef struct sqlite3_pcache sqlite3_pcache; + +/* +** CAPI3REF: Application Defined Page Cache. +** KEYWORDS: {page cache} +** EXPERIMENTAL +** +** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can +** register an alternative page cache implementation by passing in an +** instance of the sqlite3_pcache_methods structure.)^ The majority of the +** heap memory used by SQLite is used by the page cache to cache data read +** from, or ready to be written to, the database file. By implementing a +** custom page cache using this API, an application can control more +** precisely the amount of memory consumed by SQLite, the way in which +** that memory is allocated and released, and the policies used to +** determine exactly which parts of a database file are cached and for +** how long. +** +** ^(The contents of the sqlite3_pcache_methods structure are copied to an +** internal buffer by SQLite within the call to [sqlite3_config]. Hence +** the application may discard the parameter after the call to +** [sqlite3_config()] returns.)^ +** +** ^The xInit() method is called once for each call to [sqlite3_initialize()] +** (usually only once during the lifetime of the process). ^(The xInit() +** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^ +** ^The xInit() method can set up up global structures and/or any mutexes +** required by the custom page cache implementation. +** +** ^The xShutdown() method is called from within [sqlite3_shutdown()], +** if the application invokes this API. It can be used to clean up +** any outstanding resources before process shutdown, if required. +** +** ^SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes +** the xInit method, so the xInit method need not be threadsafe. ^The +** xShutdown method is only called from [sqlite3_shutdown()] so it does +** not need to be threadsafe either. All other methods must be threadsafe +** in multithreaded applications. +** +** ^SQLite will never invoke xInit() more than once without an intervening +** call to xShutdown(). +** +** ^The xCreate() method is used to construct a new cache instance. SQLite +** will typically create one cache instance for each open database file, +** though this is not guaranteed. ^The +** first parameter, szPage, is the size in bytes of the pages that must +** be allocated by the cache. ^szPage will not be a power of two. ^szPage +** will the page size of the database file that is to be cached plus an +** increment (here called "R") of about 100 or 200. ^SQLite will use the +** extra R bytes on each page to store metadata about the underlying +** database page on disk. The value of R depends +** on the SQLite version, the target platform, and how SQLite was compiled. +** ^R is constant for a particular build of SQLite. ^The second argument to +** xCreate(), bPurgeable, is true if the cache being created will +** be used to cache database pages of a file stored on disk, or +** false if it is used for an in-memory database. ^The cache implementation +** does not have to do anything special based with the value of bPurgeable; +** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will +** never invoke xUnpin() except to deliberately delete a page. +** ^In other words, a cache created with bPurgeable set to false will +** never contain any unpinned pages. +** +** ^(The xCachesize() method may be called at any time by SQLite to set the +** suggested maximum cache-size (number of pages stored by) the cache +** instance passed as the first argument. This is the value configured using +** the SQLite "[PRAGMA cache_size]" command.)^ ^As with the bPurgeable +** parameter, the implementation is not required to do anything with this +** value; it is advisory only. +** +** ^The xPagecount() method should return the number of pages currently +** stored in the cache. +** +** ^The xFetch() method is used to fetch a page and return a pointer to it. +** ^A 'page', in this context, is a buffer of szPage bytes aligned at an +** 8-byte boundary. ^The page to be fetched is determined by the key. ^The +** mimimum key value is 1. After it has been retrieved using xFetch, the page +** is considered to be "pinned". +** +** ^If the requested page is already in the page cache, then the page cache +** implementation must return a pointer to the page buffer with its content +** intact. ^(If the requested page is not already in the cache, then the +** behavior of the cache implementation is determined by the value of the +** createFlag parameter passed to xFetch, according to the following table: +** +** +**
createFlag Behaviour when page is not already in cache +**
0 Do not allocate a new page. Return NULL. +**
1 Allocate a new page if it easy and convenient to do so. +** Otherwise return NULL. +**
2 Make every effort to allocate a new page. Only return +** NULL if allocating a new page is effectively impossible. +**
)^ +** +** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If +** a call to xFetch() with createFlag==1 returns NULL, then SQLite will +** attempt to unpin one or more cache pages by spilling the content of +** pinned pages to disk and synching the operating system disk cache. After +** attempting to unpin pages, the xFetch() method will be invoked again with +** a createFlag of 2. +** +** ^xUnpin() is called by SQLite with a pointer to a currently pinned page +** as its second argument. ^(If the third parameter, discard, is non-zero, +** then the page should be evicted from the cache. In this case SQLite +** assumes that the next time the page is retrieved from the cache using +** the xFetch() method, it will be zeroed.)^ ^If the discard parameter is +** zero, then the page is considered to be unpinned. ^The cache implementation +** may choose to evict unpinned pages at any time. +** +** ^(The cache is not required to perform any reference counting. A single +** call to xUnpin() unpins the page regardless of the number of prior calls +** to xFetch().)^ +** +** ^The xRekey() method is used to change the key value associated with the +** page passed as the second argument from oldKey to newKey. ^If the cache +** previously contains an entry associated with newKey, it should be +** discarded. ^Any prior cache entry associated with newKey is guaranteed not +** to be pinned. +** +** ^When SQLite calls the xTruncate() method, the cache must discard all +** existing cache entries with page numbers (keys) greater than or equal +** to the value of the iLimit parameter passed to xTruncate(). ^If any +** of these pages are pinned, they are implicitly unpinned, meaning that +** they can be safely discarded. +** +** ^The xDestroy() method is used to delete a cache allocated by xCreate(). +** All resources associated with the specified cache should be freed. ^After +** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] +** handle invalid, and will not use it with any other sqlite3_pcache_methods +** functions. +*/ +typedef struct sqlite3_pcache_methods sqlite3_pcache_methods; +struct sqlite3_pcache_methods { + void *pArg; + int (*xInit)(void*); + void (*xShutdown)(void*); + sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable); + void (*xCachesize)(sqlite3_pcache*, int nCachesize); + int (*xPagecount)(sqlite3_pcache*); + void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); + void (*xUnpin)(sqlite3_pcache*, void*, int discard); + void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey); + void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); + void (*xDestroy)(sqlite3_pcache*); +}; + +/* +** CAPI3REF: Online Backup Object +** EXPERIMENTAL +** +** The sqlite3_backup object records state information about an ongoing +** online backup operation. ^The sqlite3_backup object is created by +** a call to [sqlite3_backup_init()] and is destroyed by a call to +** [sqlite3_backup_finish()]. +** +** See Also: [Using the SQLite Online Backup API] +*/ +typedef struct sqlite3_backup sqlite3_backup; + +/* +** CAPI3REF: Online Backup API. +** EXPERIMENTAL +** +** The backup API copies the content of one database into another. +** It is useful either for creating backups of databases or +** for copying in-memory databases to or from persistent files. +** +** See Also: [Using the SQLite Online Backup API] +** +** ^Exclusive access is required to the destination database for the +** duration of the operation. ^However the source database is only +** read-locked while it is actually being read; it is not locked +** continuously for the entire backup operation. ^Thus, the backup may be +** performed on a live source database without preventing other users from +** reading or writing to the source database while the backup is underway. +** +** ^(To perform a backup operation: +**
    +**
  1. sqlite3_backup_init() is called once to initialize the +** backup, +**
  2. sqlite3_backup_step() is called one or more times to transfer +** the data between the two databases, and finally +**
  3. sqlite3_backup_finish() is called to release all resources +** associated with the backup operation. +**
)^ +** There should be exactly one call to sqlite3_backup_finish() for each +** successful call to sqlite3_backup_init(). +** +** sqlite3_backup_init() +** +** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the +** [database connection] associated with the destination database +** and the database name, respectively. +** ^The database name is "main" for the main database, "temp" for the +** temporary database, or the name specified after the AS keyword in +** an [ATTACH] statement for an attached database. +** ^The S and M arguments passed to +** sqlite3_backup_init(D,N,S,M) identify the [database connection] +** and database name of the source database, respectively. +** ^The source and destination [database connections] (parameters S and D) +** must be different or else sqlite3_backup_init(D,N,S,M) will file with +** an error. +** +** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is +** returned and an error code and error message are store3d in the +** destination [database connection] D. +** ^The error code and message for the failed call to sqlite3_backup_init() +** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or +** [sqlite3_errmsg16()] functions. +** ^A successful call to sqlite3_backup_init() returns a pointer to an +** [sqlite3_backup] object. +** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and +** sqlite3_backup_finish() functions to perform the specified backup +** operation. +** +** sqlite3_backup_step() +** +** ^Function sqlite3_backup_step(B,N) will copy up to N pages between +** the source and destination databases specified by [sqlite3_backup] object B. +** ^If N is negative, all remaining source pages are copied. +** ^If sqlite3_backup_step(B,N) successfully copies N pages and there +** are still more pages to be copied, then the function resturns [SQLITE_OK]. +** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages +** from source to destination, then it returns [SQLITE_DONE]. +** ^If an error occurs while running sqlite3_backup_step(B,N), +** then an [error code] is returned. ^As well as [SQLITE_OK] and +** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY], +** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an +** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code. +** +** ^The sqlite3_backup_step() might return [SQLITE_READONLY] if the destination +** database was opened read-only or if +** the destination is an in-memory database with a different page size +** from the source database. +** +** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then +** the [sqlite3_busy_handler | busy-handler function] +** is invoked (if one is specified). ^If the +** busy-handler returns non-zero before the lock is available, then +** [SQLITE_BUSY] is returned to the caller. ^In this case the call to +** sqlite3_backup_step() can be retried later. ^If the source +** [database connection] +** is being used to write to the source database when sqlite3_backup_step() +** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this +** case the call to sqlite3_backup_step() can be retried later on. ^(If +** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or +** [SQLITE_READONLY] is returned, then +** there is no point in retrying the call to sqlite3_backup_step(). These +** errors are considered fatal.)^ The application must accept +** that the backup operation has failed and pass the backup operation handle +** to the sqlite3_backup_finish() to release associated resources. +** +** ^The first call to sqlite3_backup_step() obtains an exclusive lock +** on the destination file. ^The exclusive lock is not released until either +** sqlite3_backup_finish() is called or the backup operation is complete +** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to +** sqlite3_backup_step() obtains a [shared lock] on the source database that +** lasts for the duration of the sqlite3_backup_step() call. +** ^Because the source database is not locked between calls to +** sqlite3_backup_step(), the source database may be modified mid-way +** through the backup process. ^If the source database is modified by an +** external process or via a database connection other than the one being +** used by the backup operation, then the backup will be automatically +** restarted by the next call to sqlite3_backup_step(). ^If the source +** database is modified by the using the same database connection as is used +** by the backup operation, then the backup database is automatically +** updated at the same time. +** +** sqlite3_backup_finish() +** +** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the +** application wishes to abandon the backup operation, the application +** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish(). +** ^The sqlite3_backup_finish() interfaces releases all +** resources associated with the [sqlite3_backup] object. +** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any +** active write-transaction on the destination database is rolled back. +** The [sqlite3_backup] object is invalid +** and may not be used following a call to sqlite3_backup_finish(). +** +** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no +** sqlite3_backup_step() errors occurred, regardless or whether or not +** sqlite3_backup_step() completed. +** ^If an out-of-memory condition or IO error occurred during any prior +** sqlite3_backup_step() call on the same [sqlite3_backup] object, then +** sqlite3_backup_finish() returns the corresponding [error code]. +** +** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() +** is not a permanent error and does not affect the return value of +** sqlite3_backup_finish(). +** +** sqlite3_backup_remaining(), sqlite3_backup_pagecount() +** +** ^Each call to sqlite3_backup_step() sets two values inside +** the [sqlite3_backup] object: the number of pages still to be backed +** up and the total number of pages in the source databae file. +** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces +** retrieve these two values, respectively. +** +** ^The values returned by these functions are only updated by +** sqlite3_backup_step(). ^If the source database is modified during a backup +** operation, then the values are not updated to account for any extra +** pages that need to be updated or the size of the source database file +** changing. +** +** Concurrent Usage of Database Handles +** +** ^The source [database connection] may be used by the application for other +** purposes while a backup operation is underway or being initialized. +** ^If SQLite is compiled and configured to support threadsafe database +** connections, then the source database connection may be used concurrently +** from within other threads. +** +** However, the application must guarantee that the destination +** [database connection] is not passed to any other API (by any thread) after +** sqlite3_backup_init() is called and before the corresponding call to +** sqlite3_backup_finish(). SQLite does not currently check to see +** if the application incorrectly accesses the destination [database connection] +** and so no error code is reported, but the operations may malfunction +** nevertheless. Use of the destination database connection while a +** backup is in progress might also also cause a mutex deadlock. +** +** If running in [shared cache mode], the application must +** guarantee that the shared cache used by the destination database +** is not accessed while the backup is running. In practice this means +** that the application must guarantee that the disk file being +** backed up to is not accessed by any connection within the process, +** not just the specific connection that was passed to sqlite3_backup_init(). +** +** The [sqlite3_backup] object itself is partially threadsafe. Multiple +** threads may safely make multiple concurrent calls to sqlite3_backup_step(). +** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount() +** APIs are not strictly speaking threadsafe. If they are invoked at the +** same time as another thread is invoking sqlite3_backup_step() it is +** possible that they return invalid values. +*/ +SQLITE_API sqlite3_backup *sqlite3_backup_init( + sqlite3 *pDest, /* Destination database handle */ + const char *zDestName, /* Destination database name */ + sqlite3 *pSource, /* Source database handle */ + const char *zSourceName /* Source database name */ +); +SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage); +SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p); +SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p); +SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); + +/* +** CAPI3REF: Unlock Notification +** EXPERIMENTAL +** +** ^When running in shared-cache mode, a database operation may fail with +** an [SQLITE_LOCKED] error if the required locks on the shared-cache or +** individual tables within the shared-cache cannot be obtained. See +** [SQLite Shared-Cache Mode] for a description of shared-cache locking. +** ^This API may be used to register a callback that SQLite will invoke +** when the connection currently holding the required lock relinquishes it. +** ^This API is only available if the library was compiled with the +** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined. +** +** See Also: [Using the SQLite Unlock Notification Feature]. +** +** ^Shared-cache locks are released when a database connection concludes +** its current transaction, either by committing it or rolling it back. +** +** ^When a connection (known as the blocked connection) fails to obtain a +** shared-cache lock and SQLITE_LOCKED is returned to the caller, the +** identity of the database connection (the blocking connection) that +** has locked the required resource is stored internally. ^After an +** application receives an SQLITE_LOCKED error, it may call the +** sqlite3_unlock_notify() method with the blocked connection handle as +** the first argument to register for a callback that will be invoked +** when the blocking connections current transaction is concluded. ^The +** callback is invoked from within the [sqlite3_step] or [sqlite3_close] +** call that concludes the blocking connections transaction. +** +** ^(If sqlite3_unlock_notify() is called in a multi-threaded application, +** there is a chance that the blocking connection will have already +** concluded its transaction by the time sqlite3_unlock_notify() is invoked. +** If this happens, then the specified callback is invoked immediately, +** from within the call to sqlite3_unlock_notify().)^ +** +** ^If the blocked connection is attempting to obtain a write-lock on a +** shared-cache table, and more than one other connection currently holds +** a read-lock on the same table, then SQLite arbitrarily selects one of +** the other connections to use as the blocking connection. +** +** ^(There may be at most one unlock-notify callback registered by a +** blocked connection. If sqlite3_unlock_notify() is called when the +** blocked connection already has a registered unlock-notify callback, +** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is +** called with a NULL pointer as its second argument, then any existing +** unlock-notify callback is cancelled. ^The blocked connections +** unlock-notify callback may also be canceled by closing the blocked +** connection using [sqlite3_close()]. +** +** The unlock-notify callback is not reentrant. If an application invokes +** any sqlite3_xxx API functions from within an unlock-notify callback, a +** crash or deadlock may be the result. +** +** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always +** returns SQLITE_OK. +** +** Callback Invocation Details +** +** When an unlock-notify callback is registered, the application provides a +** single void* pointer that is passed to the callback when it is invoked. +** However, the signature of the callback function allows SQLite to pass +** it an array of void* context pointers. The first argument passed to +** an unlock-notify callback is a pointer to an array of void* pointers, +** and the second is the number of entries in the array. +** +** When a blocking connections transaction is concluded, there may be +** more than one blocked connection that has registered for an unlock-notify +** callback. ^If two or more such blocked connections have specified the +** same callback function, then instead of invoking the callback function +** multiple times, it is invoked once with the set of void* context pointers +** specified by the blocked connections bundled together into an array. +** This gives the application an opportunity to prioritize any actions +** related to the set of unblocked database connections. +** +** Deadlock Detection +** +** Assuming that after registering for an unlock-notify callback a +** database waits for the callback to be issued before taking any further +** action (a reasonable assumption), then using this API may cause the +** application to deadlock. For example, if connection X is waiting for +** connection Y's transaction to be concluded, and similarly connection +** Y is waiting on connection X's transaction, then neither connection +** will proceed and the system may remain deadlocked indefinitely. +** +** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock +** detection. ^If a given call to sqlite3_unlock_notify() would put the +** system in a deadlocked state, then SQLITE_LOCKED is returned and no +** unlock-notify callback is registered. The system is said to be in +** a deadlocked state if connection A has registered for an unlock-notify +** callback on the conclusion of connection B's transaction, and connection +** B has itself registered for an unlock-notify callback when connection +** A's transaction is concluded. ^Indirect deadlock is also detected, so +** the system is also considered to be deadlocked if connection B has +** registered for an unlock-notify callback on the conclusion of connection +** C's transaction, where connection C is waiting on connection A. ^Any +** number of levels of indirection are allowed. +** +** The "DROP TABLE" Exception +** +** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost +** always appropriate to call sqlite3_unlock_notify(). There is however, +** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement, +** SQLite checks if there are any currently executing SELECT statements +** that belong to the same connection. If there are, SQLITE_LOCKED is +** returned. In this case there is no "blocking connection", so invoking +** sqlite3_unlock_notify() results in the unlock-notify callback being +** invoked immediately. If the application then re-attempts the "DROP TABLE" +** or "DROP INDEX" query, an infinite loop might be the result. +** +** One way around this problem is to check the extended error code returned +** by an sqlite3_step() call. ^(If there is a blocking connection, then the +** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in +** the special "DROP TABLE/INDEX" case, the extended error code is just +** SQLITE_LOCKED.)^ +*/ +SQLITE_API int sqlite3_unlock_notify( + sqlite3 *pBlocked, /* Waiting connection */ + void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */ + void *pNotifyArg /* Argument to pass to xNotify */ +); + + +/* +** CAPI3REF: String Comparison +** EXPERIMENTAL +** +** ^The [sqlite3_strnicmp()] API allows applications and extensions to +** compare the contents of two buffers containing UTF-8 strings in a +** case-indendent fashion, using the same definition of case independence +** that SQLite uses internally when comparing identifiers. +*/ +SQLITE_API int sqlite3_strnicmp(const char *, const char *, int); + +/* +** CAPI3REF: Error Logging Interface +** EXPERIMENTAL +** +** ^The [sqlite3_log()] interface writes a message into the error log +** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. +** ^If logging is enabled, the zFormat string and subsequent arguments are +** passed through to [sqlite3_vmprintf()] to generate the final output string. +** +** The sqlite3_log() interface is intended for use by extensions such as +** virtual tables, collating functions, and SQL functions. While there is +** nothing to prevent an application from calling sqlite3_log(), doing so +** is considered bad form. +** +** The zFormat string must not be NULL. +** +** To avoid deadlocks and other threading problems, the sqlite3_log() routine +** will not use dynamically allocated memory. The log message is stored in +** a fixed-length buffer on the stack. If the log message is longer than +** a few hundred characters, it will be truncated to the length of the +** buffer. +*/ +SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...); + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include hash.h in the middle of sqliteInt.h ******************/ +/************** Begin file hash.h ********************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. +*/ +#ifndef _SQLITE_HASH_H_ +#define _SQLITE_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct Hash Hash; +typedef struct HashElem HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, some of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +** +** All elements of the hash table are on a single doubly-linked list. +** Hash.first points to the head of this list. +** +** There are Hash.htsize buckets. Each bucket points to a spot in +** the global doubly-linked list. The contents of the bucket are the +** element pointed to plus the next _ht.count-1 elements in the list. +** +** Hash.htsize and Hash.ht may be zero. In that case lookup is done +** by a linear search of the global list. For small tables, the +** Hash.ht table is never allocated because if there are few elements +** in the table, it is faster to do a linear search than to manage +** the hash table. +*/ +struct Hash { + unsigned int htsize; /* Number of buckets in the hash table */ + unsigned int count; /* Number of entries in this table */ + HashElem *first; /* The first element of the array */ + struct _ht { /* the hash table */ + int count; /* Number of entries with this hash */ + HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct HashElem { + HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + const char *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +SQLITE_PRIVATE void sqlite3HashInit(Hash*); +SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData); +SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey); +SQLITE_PRIVATE void sqlite3HashClear(Hash*); + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** Hash h; +** HashElem *p; +** ... +** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ +** SomeStructure *pData = sqliteHashData(p); +** // do something with pData +** } +*/ +#define sqliteHashFirst(H) ((H)->first) +#define sqliteHashNext(E) ((E)->next) +#define sqliteHashData(E) ((E)->data) +/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ +/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ + +/* +** Number of entries in a hash table +*/ +/* #define sqliteHashCount(H) ((H)->count) // NOT USED */ + +#endif /* _SQLITE_HASH_H_ */ + +/************** End of hash.h ************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include parse.h in the middle of sqliteInt.h *****************/ +/************** Begin file parse.h *******************************************/ +#define TK_SEMI 1 +#define TK_EXPLAIN 2 +#define TK_QUERY 3 +#define TK_PLAN 4 +#define TK_BEGIN 5 +#define TK_TRANSACTION 6 +#define TK_DEFERRED 7 +#define TK_IMMEDIATE 8 +#define TK_EXCLUSIVE 9 +#define TK_COMMIT 10 +#define TK_END 11 +#define TK_ROLLBACK 12 +#define TK_SAVEPOINT 13 +#define TK_RELEASE 14 +#define TK_TO 15 +#define TK_TABLE 16 +#define TK_CREATE 17 +#define TK_IF 18 +#define TK_NOT 19 +#define TK_EXISTS 20 +#define TK_TEMP 21 +#define TK_LP 22 +#define TK_RP 23 +#define TK_AS 24 +#define TK_COMMA 25 +#define TK_ID 26 +#define TK_INDEXED 27 +#define TK_ABORT 28 +#define TK_ACTION 29 +#define TK_AFTER 30 +#define TK_ANALYZE 31 +#define TK_ASC 32 +#define TK_ATTACH 33 +#define TK_BEFORE 34 +#define TK_BY 35 +#define TK_CASCADE 36 +#define TK_CAST 37 +#define TK_COLUMNKW 38 +#define TK_CONFLICT 39 +#define TK_DATABASE 40 +#define TK_DESC 41 +#define TK_DETACH 42 +#define TK_EACH 43 +#define TK_FAIL 44 +#define TK_FOR 45 +#define TK_IGNORE 46 +#define TK_INITIALLY 47 +#define TK_INSTEAD 48 +#define TK_LIKE_KW 49 +#define TK_MATCH 50 +#define TK_NO 51 +#define TK_KEY 52 +#define TK_OF 53 +#define TK_OFFSET 54 +#define TK_PRAGMA 55 +#define TK_RAISE 56 +#define TK_REPLACE 57 +#define TK_RESTRICT 58 +#define TK_ROW 59 +#define TK_TRIGGER 60 +#define TK_VACUUM 61 +#define TK_VIEW 62 +#define TK_VIRTUAL 63 +#define TK_REINDEX 64 +#define TK_RENAME 65 +#define TK_CTIME_KW 66 +#define TK_ANY 67 +#define TK_OR 68 +#define TK_AND 69 +#define TK_IS 70 +#define TK_BETWEEN 71 +#define TK_IN 72 +#define TK_ISNULL 73 +#define TK_NOTNULL 74 +#define TK_NE 75 +#define TK_EQ 76 +#define TK_GT 77 +#define TK_LE 78 +#define TK_LT 79 +#define TK_GE 80 +#define TK_ESCAPE 81 +#define TK_BITAND 82 +#define TK_BITOR 83 +#define TK_LSHIFT 84 +#define TK_RSHIFT 85 +#define TK_PLUS 86 +#define TK_MINUS 87 +#define TK_STAR 88 +#define TK_SLASH 89 +#define TK_REM 90 +#define TK_CONCAT 91 +#define TK_COLLATE 92 +#define TK_BITNOT 93 +#define TK_STRING 94 +#define TK_JOIN_KW 95 +#define TK_CONSTRAINT 96 +#define TK_DEFAULT 97 +#define TK_NULL 98 +#define TK_PRIMARY 99 +#define TK_UNIQUE 100 +#define TK_CHECK 101 +#define TK_REFERENCES 102 +#define TK_AUTOINCR 103 +#define TK_ON 104 +#define TK_INSERT 105 +#define TK_DELETE 106 +#define TK_UPDATE 107 +#define TK_SET 108 +#define TK_DEFERRABLE 109 +#define TK_FOREIGN 110 +#define TK_DROP 111 +#define TK_UNION 112 +#define TK_ALL 113 +#define TK_EXCEPT 114 +#define TK_INTERSECT 115 +#define TK_SELECT 116 +#define TK_DISTINCT 117 +#define TK_DOT 118 +#define TK_FROM 119 +#define TK_JOIN 120 +#define TK_USING 121 +#define TK_ORDER 122 +#define TK_GROUP 123 +#define TK_HAVING 124 +#define TK_LIMIT 125 +#define TK_WHERE 126 +#define TK_INTO 127 +#define TK_VALUES 128 +#define TK_INTEGER 129 +#define TK_FLOAT 130 +#define TK_BLOB 131 +#define TK_REGISTER 132 +#define TK_VARIABLE 133 +#define TK_CASE 134 +#define TK_WHEN 135 +#define TK_THEN 136 +#define TK_ELSE 137 +#define TK_INDEX 138 +#define TK_ALTER 139 +#define TK_ADD 140 +#define TK_TO_TEXT 141 +#define TK_TO_BLOB 142 +#define TK_TO_NUMERIC 143 +#define TK_TO_INT 144 +#define TK_TO_REAL 145 +#define TK_ISNOT 146 +#define TK_END_OF_FILE 147 +#define TK_ILLEGAL 148 +#define TK_SPACE 149 +#define TK_UNCLOSED_STRING 150 +#define TK_FUNCTION 151 +#define TK_COLUMN 152 +#define TK_AGG_FUNCTION 153 +#define TK_AGG_COLUMN 154 +#define TK_CONST_FUNC 155 +#define TK_UMINUS 156 +#define TK_UPLUS 157 + +/************** End of parse.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +#include +#include +#include +#include +#include + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite_int64 +# define LONGDOUBLE_TYPE sqlite_int64 +# ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) +# endif +# define SQLITE_OMIT_DATETIME_FUNCS 1 +# define SQLITE_OMIT_TRACE 1 +# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT +# undef SQLITE_HAVE_ISNAN +#endif +#ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (1e99) +#endif + +/* +** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 +** afterward. Having this macro allows us to cause the C compiler +** to omit code used by TEMP tables without messy #ifndef statements. +*/ +#ifdef SQLITE_OMIT_TEMPDB +#define OMIT_TEMPDB 1 +#else +#define OMIT_TEMPDB 0 +#endif + +/* +** The "file format" number is an integer that is incremented whenever +** the VDBE-level file format changes. The following macros define the +** the default file format for new databases and the maximum file format +** that the library can read. +*/ +#define SQLITE_MAX_FILE_FORMAT 4 +#ifndef SQLITE_DEFAULT_FILE_FORMAT +# define SQLITE_DEFAULT_FILE_FORMAT 1 +#endif + +/* +** Determine whether triggers are recursive by default. This can be +** changed at run-time using a pragma. +*/ +#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS +# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 +#endif + +/* +** Provide a default value for SQLITE_TEMP_STORE in case it is not specified +** on the command-line +*/ +#ifndef SQLITE_TEMP_STORE +# define SQLITE_TEMP_STORE 1 +#endif + +/* +** GCC does not define the offsetof() macro so we'll have to do it +** ourselves. +*/ +#ifndef offsetof +#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) +#endif + +/* +** Check to see if this machine uses EBCDIC. (Yes, believe it or +** not, there are still machines out there that use EBCDIC.) +*/ +#if 'A' == '\301' +# define SQLITE_EBCDIC 1 +#else +# define SQLITE_ASCII 1 +#endif + +/* +** Integers of known sizes. These typedefs might change for architectures +** where the sizes very. Preprocessor macros are available so that the +** types can be conveniently redefined at compile-type. Like this: +** +** cc '-DUINTPTR_TYPE=long long int' ... +*/ +#ifndef UINT32_TYPE +# ifdef HAVE_UINT32_T +# define UINT32_TYPE uint32_t +# else +# define UINT32_TYPE unsigned int +# endif +#endif +#ifndef UINT16_TYPE +# ifdef HAVE_UINT16_T +# define UINT16_TYPE uint16_t +# else +# define UINT16_TYPE unsigned short int +# endif +#endif +#ifndef INT16_TYPE +# ifdef HAVE_INT16_T +# define INT16_TYPE int16_t +# else +# define INT16_TYPE short int +# endif +#endif +#ifndef UINT8_TYPE +# ifdef HAVE_UINT8_T +# define UINT8_TYPE uint8_t +# else +# define UINT8_TYPE unsigned char +# endif +#endif +#ifndef INT8_TYPE +# ifdef HAVE_INT8_T +# define INT8_TYPE int8_t +# else +# define INT8_TYPE signed char +# endif +#endif +#ifndef LONGDOUBLE_TYPE +# define LONGDOUBLE_TYPE long double +#endif +typedef sqlite_int64 i64; /* 8-byte signed integer */ +typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ +typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ +typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ +typedef INT16_TYPE i16; /* 2-byte signed integer */ +typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ +typedef INT8_TYPE i8; /* 1-byte signed integer */ + +/* +** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value +** that can be stored in a u32 without loss of data. The value +** is 0x00000000ffffffff. But because of quirks of some compilers, we +** have to specify the value in the less intuitive manner shown: +*/ +#define SQLITE_MAX_U32 ((((u64)1)<<32)-1) + +/* +** Macros to determine whether the machine is big or little endian, +** evaluated at runtime. +*/ +#ifdef SQLITE_AMALGAMATION +SQLITE_PRIVATE const int sqlite3one = 1; +#else +SQLITE_PRIVATE const int sqlite3one; +#endif +#if defined(i386) || defined(__i386__) || defined(_M_IX86)\ + || defined(__x86_64) || defined(__x86_64__) +# define SQLITE_BIGENDIAN 0 +# define SQLITE_LITTLEENDIAN 1 +# define SQLITE_UTF16NATIVE SQLITE_UTF16LE +#else +# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) +# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) +# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) +#endif + +/* +** Constants for the largest and smallest possible 64-bit signed integers. +** These macros are designed to work correctly on both 32-bit and 64-bit +** compilers. +*/ +#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) +#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) + +/* +** Round up a number to the next larger multiple of 8. This is used +** to force 8-byte alignment on 64-bit architectures. +*/ +#define ROUND8(x) (((x)+7)&~7) + +/* +** Round down to the nearest multiple of 8 +*/ +#define ROUNDDOWN8(x) ((x)&~7) + +/* +** Assert that the pointer X is aligned to an 8-byte boundary. This +** macro is used only within assert() to verify that the code gets +** all alignment restrictions correct. +** +** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the +** underlying malloc() implemention might return us 4-byte aligned +** pointers. In that case, only verify 4-byte alignment. +*/ +#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC +# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) +#else +# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) +#endif + + +/* +** An instance of the following structure is used to store the busy-handler +** callback for a given sqlite handle. +** +** The sqlite.busyHandler member of the sqlite struct contains the busy +** callback for the database handle. Each pager opened via the sqlite +** handle is passed a pointer to sqlite.busyHandler. The busy-handler +** callback is currently invoked only from within pager.c. +*/ +typedef struct BusyHandler BusyHandler; +struct BusyHandler { + int (*xFunc)(void *,int); /* The busy callback */ + void *pArg; /* First arg to busy callback */ + int nBusy; /* Incremented with each busy call */ +}; + +/* +** Name of the master database table. The master database table +** is a special table that holds the names and attributes of all +** user tables and indices. +*/ +#define MASTER_NAME "sqlite_master" +#define TEMP_MASTER_NAME "sqlite_temp_master" + +/* +** The root-page of the master database table. +*/ +#define MASTER_ROOT 1 + +/* +** The name of the schema table. +*/ +#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) + +/* +** A convenience macro that returns the number of elements in +** an array. +*/ +#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) + +/* +** The following value as a destructor means to use sqlite3DbFree(). +** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. +*/ +#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) + +/* +** When SQLITE_OMIT_WSD is defined, it means that the target platform does +** not support Writable Static Data (WSD) such as global and static variables. +** All variables must either be on the stack or dynamically allocated from +** the heap. When WSD is unsupported, the variable declarations scattered +** throughout the SQLite code must become constants instead. The SQLITE_WSD +** macro is used for this purpose. And instead of referencing the variable +** directly, we use its constant as a key to lookup the run-time allocated +** buffer that holds real variable. The constant is also the initializer +** for the run-time allocated buffer. +** +** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL +** macros become no-ops and have zero performance impact. +*/ +#ifdef SQLITE_OMIT_WSD + #define SQLITE_WSD const + #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) + #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) +SQLITE_API int sqlite3_wsd_init(int N, int J); +SQLITE_API void *sqlite3_wsd_find(void *K, int L); +#else + #define SQLITE_WSD + #define GLOBAL(t,v) v + #define sqlite3GlobalConfig sqlite3Config +#endif + +/* +** The following macros are used to suppress compiler warnings and to +** make it clear to human readers when a function parameter is deliberately +** left unused within the body of a function. This usually happens when +** a function is called via a function pointer. For example the +** implementation of an SQL aggregate step callback may not use the +** parameter indicating the number of arguments passed to the aggregate, +** if it knows that this is enforced elsewhere. +** +** When a function parameter is not used at all within the body of a function, +** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. +** However, these macros may also be used to suppress warnings related to +** parameters that may or may not be used depending on compilation options. +** For example those parameters only used in assert() statements. In these +** cases the parameters are named as per the usual conventions. +*/ +#define UNUSED_PARAMETER(x) (void)(x) +#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) + +/* +** Forward references to structures +*/ +typedef struct AggInfo AggInfo; +typedef struct AuthContext AuthContext; +typedef struct AutoincInfo AutoincInfo; +typedef struct Bitvec Bitvec; +typedef struct CollSeq CollSeq; +typedef struct Column Column; +typedef struct Db Db; +typedef struct Schema Schema; +typedef struct Expr Expr; +typedef struct ExprList ExprList; +typedef struct ExprSpan ExprSpan; +typedef struct FKey FKey; +typedef struct FuncDef FuncDef; +typedef struct FuncDefHash FuncDefHash; +typedef struct IdList IdList; +typedef struct Index Index; +typedef struct IndexSample IndexSample; +typedef struct KeyClass KeyClass; +typedef struct KeyInfo KeyInfo; +typedef struct Lookaside Lookaside; +typedef struct LookasideSlot LookasideSlot; +typedef struct Module Module; +typedef struct NameContext NameContext; +typedef struct Parse Parse; +typedef struct RowSet RowSet; +typedef struct Savepoint Savepoint; +typedef struct Select Select; +typedef struct SrcList SrcList; +typedef struct StrAccum StrAccum; +typedef struct Table Table; +typedef struct TableLock TableLock; +typedef struct Token Token; +typedef struct Trigger Trigger; +typedef struct TriggerPrg TriggerPrg; +typedef struct TriggerStep TriggerStep; +typedef struct UnpackedRecord UnpackedRecord; +typedef struct VTable VTable; +typedef struct Walker Walker; +typedef struct WherePlan WherePlan; +typedef struct WhereInfo WhereInfo; +typedef struct WhereLevel WhereLevel; + +/* +** Defer sourcing vdbe.h and btree.h until after the "u8" and +** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque +** pointer types (i.e. FuncDef) defined above. +*/ +/************** Include btree.h in the middle of sqliteInt.h *****************/ +/************** Begin file btree.h *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite B-Tree file +** subsystem. See comments in the source code for a detailed description +** of what each interface routine does. +*/ +#ifndef _BTREE_H_ +#define _BTREE_H_ + +/* TODO: This definition is just included so other modules compile. It +** needs to be revisited. +*/ +#define SQLITE_N_BTREE_META 10 + +/* +** If defined as non-zero, auto-vacuum is enabled by default. Otherwise +** it must be turned on for each database using "PRAGMA auto_vacuum = 1". +*/ +#ifndef SQLITE_DEFAULT_AUTOVACUUM + #define SQLITE_DEFAULT_AUTOVACUUM 0 +#endif + +#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ +#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ +#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ + +/* +** Forward declarations of structure +*/ +typedef struct Btree Btree; +typedef struct BtCursor BtCursor; +typedef struct BtShared BtShared; +typedef struct BtreeMutexArray BtreeMutexArray; + +/* +** This structure records all of the Btrees that need to hold +** a mutex before we enter sqlite3VdbeExec(). The Btrees are +** are placed in aBtree[] in order of aBtree[]->pBt. That way, +** we can always lock and unlock them all quickly. +*/ +struct BtreeMutexArray { + int nMutex; + Btree *aBtree[SQLITE_MAX_ATTACHED+1]; +}; + + +SQLITE_PRIVATE int sqlite3BtreeOpen( + const char *zFilename, /* Name of database file to open */ + sqlite3 *db, /* Associated database connection */ + Btree **ppBtree, /* Return open Btree* here */ + int flags, /* Flags */ + int vfsFlags /* Flags passed through to VFS open */ +); + +/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the +** following values. +** +** NOTE: These values must match the corresponding PAGER_ values in +** pager.h. +*/ +#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */ +#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */ +#define BTREE_MEMORY 4 /* In-memory DB. No argument */ +#define BTREE_READONLY 8 /* Open the database in read-only mode */ +#define BTREE_READWRITE 16 /* Open for both reading and writing */ +#define BTREE_CREATE 32 /* Create the database if it does not exist */ + +SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int); +SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); +SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); +SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); +SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); +SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*); +SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); +SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*); +SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags); +SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*); +SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*); +SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); +SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); +SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree); +SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); +SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); + +SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); +SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); +SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); + +SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); + +/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR +** of the following flags: +*/ +#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ +#define BTREE_ZERODATA 2 /* Table has keys only - no data */ +#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */ + +SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); +SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*); +SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int); + +SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); +SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); + +/* +** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta +** should be one of the following values. The integer values are assigned +** to constants so that the offset of the corresponding field in an +** SQLite database header may be found using the following formula: +** +** offset = 36 + (idx * 4) +** +** For example, the free-page-count field is located at byte offset 36 of +** the database file header. The incr-vacuum-flag field is located at +** byte offset 64 (== 36+4*7). +*/ +#define BTREE_FREE_PAGE_COUNT 0 +#define BTREE_SCHEMA_VERSION 1 +#define BTREE_FILE_FORMAT 2 +#define BTREE_DEFAULT_CACHE_SIZE 3 +#define BTREE_LARGEST_ROOT_PAGE 4 +#define BTREE_TEXT_ENCODING 5 +#define BTREE_USER_VERSION 6 +#define BTREE_INCR_VACUUM 7 + +SQLITE_PRIVATE int sqlite3BtreeCursor( + Btree*, /* BTree containing table to open */ + int iTable, /* Index of root page */ + int wrFlag, /* 1 for writing. 0 for read-only */ + struct KeyInfo*, /* First argument to compare function */ + BtCursor *pCursor /* Space to write cursor structure */ +); +SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); +SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*); + +SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked( + BtCursor*, + UnpackedRecord *pUnKey, + i64 intKey, + int bias, + int *pRes +); +SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*); +SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, + const void *pData, int nData, + int nZero, int bias, int seekResult); +SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); +SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); +SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); +SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); +SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64); +SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*); + +SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); +SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); + +SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); +SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); + +#ifndef NDEBUG +SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); +#endif + +#ifndef SQLITE_OMIT_BTREECOUNT +SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *); +#endif + +#ifdef SQLITE_TEST +SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); +SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); +#endif + +/* +** If we are not using shared cache, then there is no need to +** use mutexes to access the BtShared structures. So make the +** Enter and Leave procedures no-ops. +*/ +#ifndef SQLITE_OMIT_SHARED_CACHE +SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); +SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); +#else +# define sqlite3BtreeEnter(X) +# define sqlite3BtreeEnterAll(X) +#endif + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE +SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); +SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); +SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); +SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); +SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*); +SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*); +SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*); +#ifndef NDEBUG + /* These routines are used inside assert() statements only. */ +SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); +SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); +#endif +#else + +# define sqlite3BtreeLeave(X) +# define sqlite3BtreeEnterCursor(X) +# define sqlite3BtreeLeaveCursor(X) +# define sqlite3BtreeLeaveAll(X) +# define sqlite3BtreeMutexArrayEnter(X) +# define sqlite3BtreeMutexArrayLeave(X) +# define sqlite3BtreeMutexArrayInsert(X,Y) + +# define sqlite3BtreeHoldsMutex(X) 1 +# define sqlite3BtreeHoldsAllMutexes(X) 1 +#endif + + +#endif /* _BTREE_H_ */ + +/************** End of btree.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include vdbe.h in the middle of sqliteInt.h ******************/ +/************** Begin file vdbe.h ********************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Header file for the Virtual DataBase Engine (VDBE) +** +** This header defines the interface to the virtual database engine +** or VDBE. The VDBE implements an abstract machine that runs a +** simple program to access and modify the underlying database. +*/ +#ifndef _SQLITE_VDBE_H_ +#define _SQLITE_VDBE_H_ + +/* +** A single VDBE is an opaque structure named "Vdbe". Only routines +** in the source file sqliteVdbe.c are allowed to see the insides +** of this structure. +*/ +typedef struct Vdbe Vdbe; + +/* +** The names of the following types declared in vdbeInt.h are required +** for the VdbeOp definition. +*/ +typedef struct VdbeFunc VdbeFunc; +typedef struct Mem Mem; +typedef struct SubProgram SubProgram; + +/* +** A single instruction of the virtual machine has an opcode +** and as many as three operands. The instruction is recorded +** as an instance of the following structure: +*/ +struct VdbeOp { + u8 opcode; /* What operation to perform */ + signed char p4type; /* One of the P4_xxx constants for p4 */ + u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ + u8 p5; /* Fifth parameter is an unsigned character */ + int p1; /* First operand */ + int p2; /* Second parameter (often the jump destination) */ + int p3; /* The third parameter */ + union { /* fourth parameter */ + int i; /* Integer value if p4type==P4_INT32 */ + void *p; /* Generic pointer */ + char *z; /* Pointer to data for string (char array) types */ + i64 *pI64; /* Used when p4type is P4_INT64 */ + double *pReal; /* Used when p4type is P4_REAL */ + FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ + VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ + CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ + Mem *pMem; /* Used when p4type is P4_MEM */ + VTable *pVtab; /* Used when p4type is P4_VTAB */ + KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ + int *ai; /* Used when p4type is P4_INTARRAY */ + SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ + } p4; +#ifdef SQLITE_DEBUG + char *zComment; /* Comment to improve readability */ +#endif +#ifdef VDBE_PROFILE + int cnt; /* Number of times this instruction was executed */ + u64 cycles; /* Total time spent executing this instruction */ +#endif +}; +typedef struct VdbeOp VdbeOp; + + +/* +** A sub-routine used to implement a trigger program. +*/ +struct SubProgram { + VdbeOp *aOp; /* Array of opcodes for sub-program */ + int nOp; /* Elements in aOp[] */ + int nMem; /* Number of memory cells required */ + int nCsr; /* Number of cursors required */ + int nRef; /* Number of pointers to this structure */ + void *token; /* id that may be used to recursive triggers */ +}; + +/* +** A smaller version of VdbeOp used for the VdbeAddOpList() function because +** it takes up less space. +*/ +struct VdbeOpList { + u8 opcode; /* What operation to perform */ + signed char p1; /* First operand */ + signed char p2; /* Second parameter (often the jump destination) */ + signed char p3; /* Third parameter */ +}; +typedef struct VdbeOpList VdbeOpList; + +/* +** Allowed values of VdbeOp.p4type +*/ +#define P4_NOTUSED 0 /* The P4 parameter is not used */ +#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ +#define P4_STATIC (-2) /* Pointer to a static string */ +#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ +#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ +#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ +#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ +#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ +#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */ +#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ +#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ +#define P4_REAL (-12) /* P4 is a 64-bit floating point value */ +#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ +#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ +#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ +#define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ + +/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure +** is made. That copy is freed when the Vdbe is finalized. But if the +** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still +** gets freed when the Vdbe is finalized so it still should be obtained +** from a single sqliteMalloc(). But no copy is made and the calling +** function should *not* try to free the KeyInfo. +*/ +#define P4_KEYINFO_HANDOFF (-16) +#define P4_KEYINFO_STATIC (-17) + +/* +** The Vdbe.aColName array contains 5n Mem structures, where n is the +** number of columns of data returned by the statement. +*/ +#define COLNAME_NAME 0 +#define COLNAME_DECLTYPE 1 +#define COLNAME_DATABASE 2 +#define COLNAME_TABLE 3 +#define COLNAME_COLUMN 4 +#ifdef SQLITE_ENABLE_COLUMN_METADATA +# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ +#else +# ifdef SQLITE_OMIT_DECLTYPE +# define COLNAME_N 1 /* Store only the name */ +# else +# define COLNAME_N 2 /* Store the name and decltype */ +# endif +#endif + +/* +** The following macro converts a relative address in the p2 field +** of a VdbeOp structure into a negative number so that +** sqlite3VdbeAddOpList() knows that the address is relative. Calling +** the macro again restores the address. +*/ +#define ADDR(X) (-1-(X)) + +/* +** The makefile scans the vdbe.c source file and creates the "opcodes.h" +** header file that defines a number for each opcode used by the VDBE. +*/ +/************** Include opcodes.h in the middle of vdbe.h ********************/ +/************** Begin file opcodes.h *****************************************/ +/* Automatically generated. Do not edit */ +/* See the mkopcodeh.awk script for details */ +#define OP_Goto 1 +#define OP_Gosub 2 +#define OP_Return 3 +#define OP_Yield 4 +#define OP_HaltIfNull 5 +#define OP_Halt 6 +#define OP_Integer 7 +#define OP_Int64 8 +#define OP_Real 130 /* same as TK_FLOAT */ +#define OP_String8 94 /* same as TK_STRING */ +#define OP_String 9 +#define OP_Null 10 +#define OP_Blob 11 +#define OP_Variable 12 +#define OP_Move 13 +#define OP_Copy 14 +#define OP_SCopy 15 +#define OP_ResultRow 16 +#define OP_Concat 91 /* same as TK_CONCAT */ +#define OP_Add 86 /* same as TK_PLUS */ +#define OP_Subtract 87 /* same as TK_MINUS */ +#define OP_Multiply 88 /* same as TK_STAR */ +#define OP_Divide 89 /* same as TK_SLASH */ +#define OP_Remainder 90 /* same as TK_REM */ +#define OP_CollSeq 17 +#define OP_Function 18 +#define OP_BitAnd 82 /* same as TK_BITAND */ +#define OP_BitOr 83 /* same as TK_BITOR */ +#define OP_ShiftLeft 84 /* same as TK_LSHIFT */ +#define OP_ShiftRight 85 /* same as TK_RSHIFT */ +#define OP_AddImm 20 +#define OP_MustBeInt 21 +#define OP_RealAffinity 22 +#define OP_ToText 141 /* same as TK_TO_TEXT */ +#define OP_ToBlob 142 /* same as TK_TO_BLOB */ +#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/ +#define OP_ToInt 144 /* same as TK_TO_INT */ +#define OP_ToReal 145 /* same as TK_TO_REAL */ +#define OP_Eq 76 /* same as TK_EQ */ +#define OP_Ne 75 /* same as TK_NE */ +#define OP_Lt 79 /* same as TK_LT */ +#define OP_Le 78 /* same as TK_LE */ +#define OP_Gt 77 /* same as TK_GT */ +#define OP_Ge 80 /* same as TK_GE */ +#define OP_Permutation 23 +#define OP_Compare 24 +#define OP_Jump 25 +#define OP_And 69 /* same as TK_AND */ +#define OP_Or 68 /* same as TK_OR */ +#define OP_Not 19 /* same as TK_NOT */ +#define OP_BitNot 93 /* same as TK_BITNOT */ +#define OP_If 26 +#define OP_IfNot 27 +#define OP_IsNull 73 /* same as TK_ISNULL */ +#define OP_NotNull 74 /* same as TK_NOTNULL */ +#define OP_Column 28 +#define OP_Affinity 29 +#define OP_MakeRecord 30 +#define OP_Count 31 +#define OP_Savepoint 32 +#define OP_AutoCommit 33 +#define OP_Transaction 34 +#define OP_ReadCookie 35 +#define OP_SetCookie 36 +#define OP_VerifyCookie 37 +#define OP_OpenRead 38 +#define OP_OpenWrite 39 +#define OP_OpenEphemeral 40 +#define OP_OpenPseudo 41 +#define OP_Close 42 +#define OP_SeekLt 43 +#define OP_SeekLe 44 +#define OP_SeekGe 45 +#define OP_SeekGt 46 +#define OP_Seek 47 +#define OP_NotFound 48 +#define OP_Found 49 +#define OP_IsUnique 50 +#define OP_NotExists 51 +#define OP_Sequence 52 +#define OP_NewRowid 53 +#define OP_Insert 54 +#define OP_InsertInt 55 +#define OP_Delete 56 +#define OP_ResetCount 57 +#define OP_RowKey 58 +#define OP_RowData 59 +#define OP_Rowid 60 +#define OP_NullRow 61 +#define OP_Last 62 +#define OP_Sort 63 +#define OP_Rewind 64 +#define OP_Prev 65 +#define OP_Next 66 +#define OP_IdxInsert 67 +#define OP_IdxDelete 70 +#define OP_IdxRowid 71 +#define OP_IdxLT 72 +#define OP_IdxGE 81 +#define OP_Destroy 92 +#define OP_Clear 95 +#define OP_CreateIndex 96 +#define OP_CreateTable 97 +#define OP_ParseSchema 98 +#define OP_LoadAnalysis 99 +#define OP_DropTable 100 +#define OP_DropIndex 101 +#define OP_DropTrigger 102 +#define OP_IntegrityCk 103 +#define OP_RowSetAdd 104 +#define OP_RowSetRead 105 +#define OP_RowSetTest 106 +#define OP_Program 107 +#define OP_Param 108 +#define OP_FkCounter 109 +#define OP_FkIfZero 110 +#define OP_MemMax 111 +#define OP_IfPos 112 +#define OP_IfNeg 113 +#define OP_IfZero 114 +#define OP_AggStep 115 +#define OP_AggFinal 116 +#define OP_Vacuum 117 +#define OP_IncrVacuum 118 +#define OP_Expire 119 +#define OP_TableLock 120 +#define OP_VBegin 121 +#define OP_VCreate 122 +#define OP_VDestroy 123 +#define OP_VOpen 124 +#define OP_VFilter 125 +#define OP_VColumn 126 +#define OP_VNext 127 +#define OP_VRename 128 +#define OP_VUpdate 129 +#define OP_Pagecount 131 +#define OP_Trace 132 +#define OP_Noop 133 +#define OP_Explain 134 + +/* The following opcode values are never used */ +#define OP_NotUsed_135 135 +#define OP_NotUsed_136 136 +#define OP_NotUsed_137 137 +#define OP_NotUsed_138 138 +#define OP_NotUsed_139 139 +#define OP_NotUsed_140 140 + + +/* Properties such as "out2" or "jump" that are specified in +** comments following the "case" for each opcode in the vdbe.c +** are encoded into bitvectors as follows: +*/ +#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ +#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ +#define OPFLG_IN1 0x0004 /* in1: P1 is an input */ +#define OPFLG_IN2 0x0008 /* in2: P2 is an input */ +#define OPFLG_IN3 0x0010 /* in3: P3 is an input */ +#define OPFLG_OUT2 0x0020 /* out2: P2 is an output */ +#define OPFLG_OUT3 0x0040 /* out3: P3 is an output */ +#define OPFLG_INITIALIZER {\ +/* 0 */ 0x00, 0x01, 0x05, 0x04, 0x04, 0x10, 0x00, 0x02,\ +/* 8 */ 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x24, 0x24,\ +/* 16 */ 0x00, 0x00, 0x00, 0x24, 0x04, 0x05, 0x04, 0x00,\ +/* 24 */ 0x00, 0x01, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02,\ +/* 32 */ 0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x00, 0x00,\ +/* 40 */ 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x08,\ +/* 48 */ 0x11, 0x11, 0x11, 0x11, 0x02, 0x02, 0x00, 0x00,\ +/* 56 */ 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x01,\ +/* 64 */ 0x01, 0x01, 0x01, 0x08, 0x4c, 0x4c, 0x00, 0x02,\ +/* 72 */ 0x01, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\ +/* 80 */ 0x15, 0x01, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c,\ +/* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x02, 0x24, 0x02, 0x00,\ +/* 96 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ +/* 104 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01, 0x08,\ +/* 112 */ 0x05, 0x05, 0x05, 0x00, 0x00, 0x00, 0x01, 0x00,\ +/* 120 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01,\ +/* 128 */ 0x00, 0x00, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00,\ +/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\ +/* 144 */ 0x04, 0x04,} + +/************** End of opcodes.h *********************************************/ +/************** Continuing where we left off in vdbe.h ***********************/ + +/* +** Prototypes for the VDBE interface. See comments on the implementation +** for a description of what each of these routines does. +*/ +SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*); +SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp); +SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1); +SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2); +SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3); +SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); +SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); +SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); +SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); +SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); +SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); +SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); +SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int); +SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*); +#endif +SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); +SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); +SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); +SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); +SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); +SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); +SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int); +SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8); +SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); +#ifndef SQLITE_OMIT_TRACE +SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); +#endif + +SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int); +SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); +SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); + + +#ifndef NDEBUG +SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); +# define VdbeComment(X) sqlite3VdbeComment X +SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); +# define VdbeNoopComment(X) sqlite3VdbeNoopComment X +#else +# define VdbeComment(X) +# define VdbeNoopComment(X) +#endif + +#endif + +/************** End of vdbe.h ************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include pager.h in the middle of sqliteInt.h *****************/ +/************** Begin file pager.h *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. The page cache subsystem reads and writes a file a page +** at a time and provides a journal for rollback. +*/ + +#ifndef _PAGER_H_ +#define _PAGER_H_ + +/* +** Default maximum size for persistent journal files. A negative +** value means no limit. This value may be overridden using the +** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". +*/ +#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT + #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 +#endif + +/* +** The type used to represent a page number. The first page in a file +** is called page 1. 0 is used to represent "not a page". +*/ +typedef u32 Pgno; + +/* +** Each open file is managed by a separate instance of the "Pager" structure. +*/ +typedef struct Pager Pager; + +/* +** Handle type for pages. +*/ +typedef struct PgHdr DbPage; + +/* +** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is +** reserved for working around a windows/posix incompatibility). It is +** used in the journal to signify that the remainder of the journal file +** is devoted to storing a master journal name - there are no more pages to +** roll back. See comments for function writeMasterJournal() in pager.c +** for details. +*/ +#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) + +/* +** Allowed values for the flags parameter to sqlite3PagerOpen(). +** +** NOTE: These values must match the corresponding BTREE_ values in btree.h. +*/ +#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ +#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */ + +/* +** Valid values for the second argument to sqlite3PagerLockingMode(). +*/ +#define PAGER_LOCKINGMODE_QUERY -1 +#define PAGER_LOCKINGMODE_NORMAL 0 +#define PAGER_LOCKINGMODE_EXCLUSIVE 1 + +/* +** Valid values for the second argument to sqlite3PagerJournalMode(). +*/ +#define PAGER_JOURNALMODE_QUERY -1 +#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ +#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ +#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ +#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ +#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ + +/* +** The remainder of this file contains the declarations of the functions +** that make up the Pager sub-system API. See source code comments for +** a detailed description of each routine. +*/ + +/* Open and close a Pager connection. */ +SQLITE_PRIVATE int sqlite3PagerOpen( + sqlite3_vfs*, + Pager **ppPager, + const char*, + int, + int, + int, + void(*)(DbPage*) +); +SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager); +SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); + +/* Functions used to configure a Pager object. */ +SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); +SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*, int); +SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); +SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); +SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int); +SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); +SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int); +SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); +SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); + +/* Functions used to obtain and release page references. */ +SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); +#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0) +SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); +SQLITE_PRIVATE void sqlite3PagerRef(DbPage*); +SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*); + +/* Operations on page references. */ +SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); +SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); +SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); +SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*); +SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); +SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); + +/* Functions used to manage pager transactions and savepoints. */ +SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*, int*); +SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int); +SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int); +SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager); +SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); +SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); +SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); +SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); +SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); + +/* Functions used to query pager state and configuration. */ +SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); +SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); +SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*); +SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*); +SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); +SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); +SQLITE_PRIVATE int sqlite3PagerNosync(Pager*); +SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); +SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*); + +/* Functions used to truncate the database file. */ +SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno); + +/* Functions to support testing and debugging. */ +#if !defined(NDEBUG) || defined(SQLITE_TEST) +SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); +SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); +#endif +#ifdef SQLITE_TEST +SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); +SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); + void disable_simulated_io_errors(void); + void enable_simulated_io_errors(void); +#else +# define disable_simulated_io_errors() +# define enable_simulated_io_errors() +#endif + +#endif /* _PAGER_H_ */ + +/************** End of pager.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include pcache.h in the middle of sqliteInt.h ****************/ +/************** Begin file pcache.h ******************************************/ +/* +** 2008 August 05 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. +*/ + +#ifndef _PCACHE_H_ + +typedef struct PgHdr PgHdr; +typedef struct PCache PCache; + +/* +** Every page in the cache is controlled by an instance of the following +** structure. +*/ +struct PgHdr { + void *pData; /* Content of this page */ + void *pExtra; /* Extra content */ + PgHdr *pDirty; /* Transient list of dirty pages */ + Pgno pgno; /* Page number for this page */ + Pager *pPager; /* The pager this page is part of */ +#ifdef SQLITE_CHECK_PAGES + u32 pageHash; /* Hash of page content */ +#endif + u16 flags; /* PGHDR flags defined below */ + + /********************************************************************** + ** Elements above are public. All that follows is private to pcache.c + ** and should not be accessed by other modules. + */ + i16 nRef; /* Number of users of this page */ + PCache *pCache; /* Cache that owns this page */ + + PgHdr *pDirtyNext; /* Next element in list of dirty pages */ + PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ +}; + +/* Bit values for PgHdr.flags */ +#define PGHDR_DIRTY 0x002 /* Page has changed */ +#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before + ** writing this page to the database */ +#define PGHDR_NEED_READ 0x008 /* Content is unread */ +#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */ +#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ + +/* Initialize and shutdown the page cache subsystem */ +SQLITE_PRIVATE int sqlite3PcacheInitialize(void); +SQLITE_PRIVATE void sqlite3PcacheShutdown(void); + +/* Page cache buffer management: +** These routines implement SQLITE_CONFIG_PAGECACHE. +*/ +SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n); + +/* Create a new pager cache. +** Under memory stress, invoke xStress to try to make pages clean. +** Only clean and unpinned pages can be reclaimed. +*/ +SQLITE_PRIVATE void sqlite3PcacheOpen( + int szPage, /* Size of every page */ + int szExtra, /* Extra space associated with each page */ + int bPurgeable, /* True if pages are on backing store */ + int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ + void *pStress, /* Argument to xStress */ + PCache *pToInit /* Preallocated space for the PCache */ +); + +/* Modify the page-size after the cache has been created. */ +SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int); + +/* Return the size in bytes of a PCache object. Used to preallocate +** storage space. +*/ +SQLITE_PRIVATE int sqlite3PcacheSize(void); + +/* One release per successful fetch. Page is pinned until released. +** Reference counted. +*/ +SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**); +SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*); + +SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ +SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ +SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ +SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ + +/* Change a page number. Used by incr-vacuum. */ +SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno); + +/* Remove all pages with pgno>x. Reset the cache if x==0 */ +SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x); + +/* Get a list of all dirty pages in the cache, sorted by page number */ +SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*); + +/* Reset and close the cache object */ +SQLITE_PRIVATE void sqlite3PcacheClose(PCache*); + +/* Clear flags from pages of the page cache */ +SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *); + +/* Discard the contents of the cache */ +SQLITE_PRIVATE void sqlite3PcacheClear(PCache*); + +/* Return the total number of outstanding page references */ +SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*); + +/* Increment the reference count of an existing page */ +SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*); + +SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*); + +/* Return the total number of pages stored in the cache */ +SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*); + +#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) +/* Iterate through all dirty pages currently stored in the cache. This +** interface is only available if SQLITE_CHECK_PAGES is defined when the +** library is built. +*/ +SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); +#endif + +/* Set and get the suggested cache-size for the specified pager-cache. +** +** If no global maximum is configured, then the system attempts to limit +** the total number of pages cached by purgeable pager-caches to the sum +** of the suggested cache-sizes. +*/ +SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int); +#ifdef SQLITE_TEST +SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *); +#endif + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +/* Try to return memory used by the pcache module to the main memory heap */ +SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int); +#endif + +#ifdef SQLITE_TEST +SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*); +#endif + +SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); + +#endif /* _PCACHE_H_ */ + +/************** End of pcache.h **********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ + +/************** Include os.h in the middle of sqliteInt.h ********************/ +/************** Begin file os.h **********************************************/ +/* +** 2001 September 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file (together with is companion C source-code file +** "os.c") attempt to abstract the underlying operating system so that +** the SQLite library will work on both POSIX and windows systems. +** +** This header file is #include-ed by sqliteInt.h and thus ends up +** being included by every source file. +*/ +#ifndef _SQLITE_OS_H_ +#define _SQLITE_OS_H_ + +/* +** Figure out if we are dealing with Unix, Windows, or some other +** operating system. After the following block of preprocess macros, +** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER +** will defined to either 1 or 0. One of the four will be 1. The other +** three will be 0. +*/ +#if defined(SQLITE_OS_OTHER) +# if SQLITE_OS_OTHER==1 +# undef SQLITE_OS_UNIX +# define SQLITE_OS_UNIX 0 +# undef SQLITE_OS_WIN +# define SQLITE_OS_WIN 0 +# undef SQLITE_OS_OS2 +# define SQLITE_OS_OS2 0 +# else +# undef SQLITE_OS_OTHER +# endif +#endif +#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER) +# define SQLITE_OS_OTHER 0 +# ifndef SQLITE_OS_WIN +# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) +# define SQLITE_OS_WIN 1 +# define SQLITE_OS_UNIX 0 +# define SQLITE_OS_OS2 0 +# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__) +# define SQLITE_OS_WIN 0 +# define SQLITE_OS_UNIX 0 +# define SQLITE_OS_OS2 1 +# else +# define SQLITE_OS_WIN 0 +# define SQLITE_OS_UNIX 1 +# define SQLITE_OS_OS2 0 +# endif +# else +# define SQLITE_OS_UNIX 0 +# define SQLITE_OS_OS2 0 +# endif +#else +# ifndef SQLITE_OS_WIN +# define SQLITE_OS_WIN 0 +# endif +#endif + +/* +** Determine if we are dealing with WindowsCE - which has a much +** reduced API. +*/ +#if defined(_WIN32_WCE) +# define SQLITE_OS_WINCE 1 +#else +# define SQLITE_OS_WINCE 0 +#endif + + +/* +** Define the maximum size of a temporary filename +*/ +#if SQLITE_OS_WIN +# include +# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50) +#elif SQLITE_OS_OS2 +# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY) +# include /* has to be included before os2.h for linking to work */ +# endif +# define INCL_DOSDATETIME +# define INCL_DOSFILEMGR +# define INCL_DOSERRORS +# define INCL_DOSMISC +# define INCL_DOSPROCESS +# define INCL_DOSMODULEMGR +# define INCL_DOSSEMAPHORES +# include +# include +# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP) +#else +# define SQLITE_TEMPNAME_SIZE 200 +#endif + +/* If the SET_FULLSYNC macro is not defined above, then make it +** a no-op +*/ +#ifndef SET_FULLSYNC +# define SET_FULLSYNC(x,y) +#endif + +/* +** The default size of a disk sector +*/ +#ifndef SQLITE_DEFAULT_SECTOR_SIZE +# define SQLITE_DEFAULT_SECTOR_SIZE 512 +#endif + +/* +** Temporary files are named starting with this prefix followed by 16 random +** alphanumeric characters, and no file extension. They are stored in the +** OS's standard temporary file directory, and are deleted prior to exit. +** If sqlite is being embedded in another program, you may wish to change the +** prefix to reflect your program's name, so that if your program exits +** prematurely, old temporary files can be easily identified. This can be done +** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. +** +** 2006-10-31: The default prefix used to be "sqlite_". But then +** Mcafee started using SQLite in their anti-virus product and it +** started putting files with the "sqlite" name in the c:/temp folder. +** This annoyed many windows users. Those users would then do a +** Google search for "sqlite", find the telephone numbers of the +** developers and call to wake them up at night and complain. +** For this reason, the default name prefix is changed to be "sqlite" +** spelled backwards. So the temp files are still identified, but +** anybody smart enough to figure out the code is also likely smart +** enough to know that calling the developer will not help get rid +** of the file. +*/ +#ifndef SQLITE_TEMP_FILE_PREFIX +# define SQLITE_TEMP_FILE_PREFIX "etilqs_" +#endif + +/* +** The following values may be passed as the second argument to +** sqlite3OsLock(). The various locks exhibit the following semantics: +** +** SHARED: Any number of processes may hold a SHARED lock simultaneously. +** RESERVED: A single process may hold a RESERVED lock on a file at +** any time. Other processes may hold and obtain new SHARED locks. +** PENDING: A single process may hold a PENDING lock on a file at +** any one time. Existing SHARED locks may persist, but no new +** SHARED locks may be obtained by other processes. +** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. +** +** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a +** process that requests an EXCLUSIVE lock may actually obtain a PENDING +** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to +** sqlite3OsLock(). +*/ +#define NO_LOCK 0 +#define SHARED_LOCK 1 +#define RESERVED_LOCK 2 +#define PENDING_LOCK 3 +#define EXCLUSIVE_LOCK 4 + +/* +** File Locking Notes: (Mostly about windows but also some info for Unix) +** +** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because +** those functions are not available. So we use only LockFile() and +** UnlockFile(). +** +** LockFile() prevents not just writing but also reading by other processes. +** A SHARED_LOCK is obtained by locking a single randomly-chosen +** byte out of a specific range of bytes. The lock byte is obtained at +** random so two separate readers can probably access the file at the +** same time, unless they are unlucky and choose the same lock byte. +** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. +** There can only be one writer. A RESERVED_LOCK is obtained by locking +** a single byte of the file that is designated as the reserved lock byte. +** A PENDING_LOCK is obtained by locking a designated byte different from +** the RESERVED_LOCK byte. +** +** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, +** which means we can use reader/writer locks. When reader/writer locks +** are used, the lock is placed on the same range of bytes that is used +** for probabilistic locking in Win95/98/ME. Hence, the locking scheme +** will support two or more Win95 readers or two or more WinNT readers. +** But a single Win95 reader will lock out all WinNT readers and a single +** WinNT reader will lock out all other Win95 readers. +** +** The following #defines specify the range of bytes used for locking. +** SHARED_SIZE is the number of bytes available in the pool from which +** a random byte is selected for a shared lock. The pool of bytes for +** shared locks begins at SHARED_FIRST. +** +** The same locking strategy and +** byte ranges are used for Unix. This leaves open the possiblity of having +** clients on win95, winNT, and unix all talking to the same shared file +** and all locking correctly. To do so would require that samba (or whatever +** tool is being used for file sharing) implements locks correctly between +** windows and unix. I'm guessing that isn't likely to happen, but by +** using the same locking range we are at least open to the possibility. +** +** Locking in windows is manditory. For this reason, we cannot store +** actual data in the bytes used for locking. The pager never allocates +** the pages involved in locking therefore. SHARED_SIZE is selected so +** that all locks will fit on a single page even at the minimum page size. +** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE +** is set high so that we don't have to allocate an unused page except +** for very large databases. But one should test the page skipping logic +** by setting PENDING_BYTE low and running the entire regression suite. +** +** Changing the value of PENDING_BYTE results in a subtly incompatible +** file format. Depending on how it is changed, you might not notice +** the incompatibility right away, even running a full regression test. +** The default location of PENDING_BYTE is the first byte past the +** 1GB boundary. +** +*/ +#define PENDING_BYTE sqlite3PendingByte +#define RESERVED_BYTE (PENDING_BYTE+1) +#define SHARED_FIRST (PENDING_BYTE+2) +#define SHARED_SIZE 510 + +/* +** Wrapper around OS specific sqlite3_os_init() function. +*/ +SQLITE_PRIVATE int sqlite3OsInit(void); + +/* +** Functions for accessing sqlite3_file methods +*/ +SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*); +SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); +SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); +SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); +SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int); +SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); +SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int); +SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int); +SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); +SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*); +#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 +SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id); +SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id); + +/* +** Functions for accessing sqlite3_vfs methods +*/ +SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); +SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int); +SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); +SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); +#ifndef SQLITE_OMIT_LOAD_EXTENSION +SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); +SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *); +SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void); +SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *); +#endif /* SQLITE_OMIT_LOAD_EXTENSION */ +SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *); +SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int); +SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*); + +/* +** Convenience functions for opening and closing files using +** sqlite3_malloc() to obtain space for the file-handle structure. +*/ +SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); +SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *); + +#endif /* _SQLITE_OS_H_ */ + +/************** End of os.h **************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include mutex.h in the middle of sqliteInt.h *****************/ +/************** Begin file mutex.h *******************************************/ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains the common header for all mutex implementations. +** The sqliteInt.h header #includes this file so that it is available +** to all source files. We break it out in an effort to keep the code +** better organized. +** +** NOTE: source files should *not* #include this header file directly. +** Source files should #include the sqliteInt.h file and let that file +** include this one indirectly. +*/ + + +/* +** Figure out what version of the code to use. The choices are +** +** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The +** mutexes implemention cannot be overridden +** at start-time. +** +** SQLITE_MUTEX_NOOP For single-threaded applications. No +** mutual exclusion is provided. But this +** implementation can be overridden at +** start-time. +** +** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. +** +** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. +** +** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2. +*/ +#if !SQLITE_THREADSAFE +# define SQLITE_MUTEX_OMIT +#endif +#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP) +# if SQLITE_OS_UNIX +# define SQLITE_MUTEX_PTHREADS +# elif SQLITE_OS_WIN +# define SQLITE_MUTEX_W32 +# elif SQLITE_OS_OS2 +# define SQLITE_MUTEX_OS2 +# else +# define SQLITE_MUTEX_NOOP +# endif +#endif + +#ifdef SQLITE_MUTEX_OMIT +/* +** If this is a no-op implementation, implement everything as macros. +*/ +#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) +#define sqlite3_mutex_free(X) +#define sqlite3_mutex_enter(X) +#define sqlite3_mutex_try(X) SQLITE_OK +#define sqlite3_mutex_leave(X) +#define sqlite3_mutex_held(X) 1 +#define sqlite3_mutex_notheld(X) 1 +#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8) +#define sqlite3MutexInit() SQLITE_OK +#define sqlite3MutexEnd() +#endif /* defined(SQLITE_MUTEX_OMIT) */ + +/************** End of mutex.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ + + +/* +** Each database file to be accessed by the system is an instance +** of the following structure. There are normally two of these structures +** in the sqlite.aDb[] array. aDb[0] is the main database file and +** aDb[1] is the database file used to hold temporary tables. Additional +** databases may be attached. +*/ +struct Db { + char *zName; /* Name of this database */ + Btree *pBt; /* The B*Tree structure for this database file */ + u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ + u8 safety_level; /* How aggressive at syncing data to disk */ + Schema *pSchema; /* Pointer to database schema (possibly shared) */ +}; + +/* +** An instance of the following structure stores a database schema. +** +** If there are no virtual tables configured in this schema, the +** Schema.db variable is set to NULL. After the first virtual table +** has been added, it is set to point to the database connection +** used to create the connection. Once a virtual table has been +** added to the Schema structure and the Schema.db variable populated, +** only that database connection may use the Schema to prepare +** statements. +*/ +struct Schema { + int schema_cookie; /* Database schema version number for this file */ + Hash tblHash; /* All tables indexed by name */ + Hash idxHash; /* All (named) indices indexed by name */ + Hash trigHash; /* All triggers indexed by name */ + Hash fkeyHash; /* All foreign keys by referenced table name */ + Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ + u8 file_format; /* Schema format version for this file */ + u8 enc; /* Text encoding used by this database */ + u16 flags; /* Flags associated with this schema */ + int cache_size; /* Number of pages to use in the cache */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + sqlite3 *db; /* "Owner" connection. See comment above */ +#endif +}; + +/* +** These macros can be used to test, set, or clear bits in the +** Db.pSchema->flags field. +*/ +#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) +#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) +#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) +#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) + +/* +** Allowed values for the DB.pSchema->flags field. +** +** The DB_SchemaLoaded flag is set after the database schema has been +** read into internal hash tables. +** +** DB_UnresetViews means that one or more views have column names that +** have been filled out. If the schema changes, these column names might +** changes and so the view will need to be reset. +*/ +#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ +#define DB_UnresetViews 0x0002 /* Some views have defined column names */ +#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ + +/* +** The number of different kinds of things that can be limited +** using the sqlite3_limit() interface. +*/ +#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) + +/* +** Lookaside malloc is a set of fixed-size buffers that can be used +** to satisfy small transient memory allocation requests for objects +** associated with a particular database connection. The use of +** lookaside malloc provides a significant performance enhancement +** (approx 10%) by avoiding numerous malloc/free requests while parsing +** SQL statements. +** +** The Lookaside structure holds configuration information about the +** lookaside malloc subsystem. Each available memory allocation in +** the lookaside subsystem is stored on a linked list of LookasideSlot +** objects. +** +** Lookaside allocations are only allowed for objects that are associated +** with a particular database connection. Hence, schema information cannot +** be stored in lookaside because in shared cache mode the schema information +** is shared by multiple database connections. Therefore, while parsing +** schema information, the Lookaside.bEnabled flag is cleared so that +** lookaside allocations are not used to construct the schema objects. +*/ +struct Lookaside { + u16 sz; /* Size of each buffer in bytes */ + u8 bEnabled; /* False to disable new lookaside allocations */ + u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ + int nOut; /* Number of buffers currently checked out */ + int mxOut; /* Highwater mark for nOut */ + LookasideSlot *pFree; /* List of available buffers */ + void *pStart; /* First byte of available memory space */ + void *pEnd; /* First byte past end of available space */ +}; +struct LookasideSlot { + LookasideSlot *pNext; /* Next buffer in the list of free buffers */ +}; + +/* +** A hash table for function definitions. +** +** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. +** Collisions are on the FuncDef.pHash chain. +*/ +struct FuncDefHash { + FuncDef *a[23]; /* Hash table for functions */ +}; + +/* +** Each database connection is an instance of the following structure. +** +** The sqlite.lastRowid records the last insert rowid generated by an +** insert statement. Inserts on views do not affect its value. Each +** trigger has its own context, so that lastRowid can be updated inside +** triggers as usual. The previous value will be restored once the trigger +** exits. Upon entering a before or instead of trigger, lastRowid is no +** longer (since after version 2.8.12) reset to -1. +** +** The sqlite.nChange does not count changes within triggers and keeps no +** context. It is reset at start of sqlite3_exec. +** The sqlite.lsChange represents the number of changes made by the last +** insert, update, or delete statement. It remains constant throughout the +** length of a statement and is then updated by OP_SetCounts. It keeps a +** context stack just like lastRowid so that the count of changes +** within a trigger is not seen outside the trigger. Changes to views do not +** affect the value of lsChange. +** The sqlite.csChange keeps track of the number of current changes (since +** the last statement) and is used to update sqlite_lsChange. +** +** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 +** store the most recent error code and, if applicable, string. The +** internal function sqlite3Error() is used to set these variables +** consistently. +*/ +struct sqlite3 { + sqlite3_vfs *pVfs; /* OS Interface */ + int nDb; /* Number of backends currently in use */ + Db *aDb; /* All backends */ + int flags; /* Miscellaneous flags. See below */ + int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ + int errCode; /* Most recent error code (SQLITE_*) */ + int errMask; /* & result codes with this before returning */ + u8 autoCommit; /* The auto-commit flag. */ + u8 temp_store; /* 1: file 2: memory 0: default */ + u8 mallocFailed; /* True if we have seen a malloc failure */ + u8 dfltLockMode; /* Default locking-mode for attached dbs */ + u8 dfltJournalMode; /* Default journal mode for attached dbs */ + signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ + u8 suppressErr; /* Do not issue error messages if true */ + int nextPagesize; /* Pagesize after VACUUM if >0 */ + int nTable; /* Number of tables in the database */ + CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ + i64 lastRowid; /* ROWID of most recent insert (see above) */ + u32 magic; /* Magic number for detect library misuse */ + int nChange; /* Value returned by sqlite3_changes() */ + int nTotalChange; /* Value returned by sqlite3_total_changes() */ + sqlite3_mutex *mutex; /* Connection mutex */ + int aLimit[SQLITE_N_LIMIT]; /* Limits */ + struct sqlite3InitInfo { /* Information used during initialization */ + int iDb; /* When back is being initialized */ + int newTnum; /* Rootpage of table being initialized */ + u8 busy; /* TRUE if currently initializing */ + u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ + } init; + int nExtension; /* Number of loaded extensions */ + void **aExtension; /* Array of shared library handles */ + struct Vdbe *pVdbe; /* List of active virtual machines */ + int activeVdbeCnt; /* Number of VDBEs currently executing */ + int writeVdbeCnt; /* Number of active VDBEs that are writing */ + void (*xTrace)(void*,const char*); /* Trace function */ + void *pTraceArg; /* Argument to the trace function */ + void (*xProfile)(void*,const char*,u64); /* Profiling function */ + void *pProfileArg; /* Argument to profile function */ + void *pCommitArg; /* Argument to xCommitCallback() */ + int (*xCommitCallback)(void*); /* Invoked at every commit. */ + void *pRollbackArg; /* Argument to xRollbackCallback() */ + void (*xRollbackCallback)(void*); /* Invoked at every commit. */ + void *pUpdateArg; + void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); + void *pCollNeededArg; + sqlite3_value *pErr; /* Most recent error message */ + char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ + char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ + union { + volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ + double notUsed1; /* Spacer */ + } u1; + Lookaside lookaside; /* Lookaside malloc configuration */ +#ifndef SQLITE_OMIT_AUTHORIZATION + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + /* Access authorization function */ + void *pAuthArg; /* 1st argument to the access auth function */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int (*xProgress)(void *); /* The progress callback */ + void *pProgressArg; /* Argument to the progress callback */ + int nProgressOps; /* Number of opcodes for progress callback */ +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + Hash aModule; /* populated by sqlite3_create_module() */ + Table *pVTab; /* vtab with active Connect/Create method */ + VTable **aVTrans; /* Virtual tables with open transactions */ + int nVTrans; /* Allocated size of aVTrans */ + VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ +#endif + FuncDefHash aFunc; /* Hash table of connection functions */ + Hash aCollSeq; /* All collating sequences */ + BusyHandler busyHandler; /* Busy callback */ + int busyTimeout; /* Busy handler timeout, in msec */ + Db aDbStatic[2]; /* Static space for the 2 default backends */ + Savepoint *pSavepoint; /* List of active savepoints */ + int nSavepoint; /* Number of non-transaction savepoints */ + int nStatement; /* Number of nested statement-transactions */ + u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ + i64 nDeferredCons; /* Net deferred constraints this transaction. */ + +#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY + /* The following variables are all protected by the STATIC_MASTER + ** mutex, not by sqlite3.mutex. They are used by code in notify.c. + ** + ** When X.pUnlockConnection==Y, that means that X is waiting for Y to + ** unlock so that it can proceed. + ** + ** When X.pBlockingConnection==Y, that means that something that X tried + ** tried to do recently failed with an SQLITE_LOCKED error due to locks + ** held by Y. + */ + sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ + sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ + void *pUnlockArg; /* Argument to xUnlockNotify */ + void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ + sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ +#endif +}; + +/* +** A macro to discover the encoding of a database. +*/ +#define ENC(db) ((db)->aDb[0].pSchema->enc) + +/* +** Possible values for the sqlite3.flags. +*/ +#define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ +#define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ +#define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ +#define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ +#define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ + /* DELETE, or UPDATE and return */ + /* the count using a callback. */ +#define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ + /* result set is empty */ +#define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ +#define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ +#define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ +#define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when + ** accessing read-only databases */ +#define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ +#define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ +#define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ +#define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ +#define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ +#define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ +#define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ +#define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ +#define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ + +/* +** Bits of the sqlite3.flags field that are used by the +** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. +** These must be the low-order bits of the flags field. +*/ +#define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ +#define SQLITE_ColumnCache 0x02 /* Disable the column cache */ +#define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ +#define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ +#define SQLITE_IndexCover 0x10 /* Disable index covering table */ +#define SQLITE_OptMask 0x1f /* Mask of all disablable opts */ + +/* +** Possible values for the sqlite.magic field. +** The numbers are obtained at random and have no special meaning, other +** than being distinct from one another. +*/ +#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ +#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ +#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ +#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ +#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ + +/* +** Each SQL function is defined by an instance of the following +** structure. A pointer to this structure is stored in the sqlite.aFunc +** hash table. When multiple functions have the same name, the hash table +** points to a linked list of these structures. +*/ +struct FuncDef { + i16 nArg; /* Number of arguments. -1 means unlimited */ + u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ + u8 flags; /* Some combination of SQLITE_FUNC_* */ + void *pUserData; /* User data parameter */ + FuncDef *pNext; /* Next function with same name */ + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ + void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ + void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ + char *zName; /* SQL name of the function. */ + FuncDef *pHash; /* Next with a different name but the same hash */ +}; + +/* +** Possible values for FuncDef.flags +*/ +#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ +#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ +#define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ +#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ +#define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ +#define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ +#define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ + +/* +** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are +** used to create the initializers for the FuncDef structures. +** +** FUNCTION(zName, nArg, iArg, bNC, xFunc) +** Used to create a scalar function definition of a function zName +** implemented by C function xFunc that accepts nArg arguments. The +** value passed as iArg is cast to a (void*) and made available +** as the user-data (sqlite3_user_data()) for the function. If +** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. +** +** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) +** Used to create an aggregate function definition implemented by +** the C functions xStep and xFinal. The first four parameters +** are interpreted in the same way as the first 4 parameters to +** FUNCTION(). +** +** LIKEFUNC(zName, nArg, pArg, flags) +** Used to create a scalar function definition of a function zName +** that accepts nArg arguments and is implemented by a call to C +** function likeFunc. Argument pArg is cast to a (void *) and made +** available as the function user-data (sqlite3_user_data()). The +** FuncDef.flags variable is set to the value passed as the flags +** parameter. +*/ +#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ + {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ + SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} +#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ + {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ + pArg, 0, xFunc, 0, 0, #zName, 0} +#define LIKEFUNC(zName, nArg, arg, flags) \ + {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} +#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ + {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ + SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} + +/* +** All current savepoints are stored in a linked list starting at +** sqlite3.pSavepoint. The first element in the list is the most recently +** opened savepoint. Savepoints are added to the list by the vdbe +** OP_Savepoint instruction. +*/ +struct Savepoint { + char *zName; /* Savepoint name (nul-terminated) */ + i64 nDeferredCons; /* Number of deferred fk violations */ + Savepoint *pNext; /* Parent savepoint (if any) */ +}; + +/* +** The following are used as the second parameter to sqlite3Savepoint(), +** and as the P1 argument to the OP_Savepoint instruction. +*/ +#define SAVEPOINT_BEGIN 0 +#define SAVEPOINT_RELEASE 1 +#define SAVEPOINT_ROLLBACK 2 + + +/* +** Each SQLite module (virtual table definition) is defined by an +** instance of the following structure, stored in the sqlite3.aModule +** hash table. +*/ +struct Module { + const sqlite3_module *pModule; /* Callback pointers */ + const char *zName; /* Name passed to create_module() */ + void *pAux; /* pAux passed to create_module() */ + void (*xDestroy)(void *); /* Module destructor function */ +}; + +/* +** information about each column of an SQL table is held in an instance +** of this structure. +*/ +struct Column { + char *zName; /* Name of this column */ + Expr *pDflt; /* Default value of this column */ + char *zDflt; /* Original text of the default value */ + char *zType; /* Data type for this column */ + char *zColl; /* Collating sequence. If NULL, use the default */ + u8 notNull; /* True if there is a NOT NULL constraint */ + u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ + char affinity; /* One of the SQLITE_AFF_... values */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + u8 isHidden; /* True if this column is 'hidden' */ +#endif +}; + +/* +** A "Collating Sequence" is defined by an instance of the following +** structure. Conceptually, a collating sequence consists of a name and +** a comparison routine that defines the order of that sequence. +** +** There may two separate implementations of the collation function, one +** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that +** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine +** native byte order. When a collation sequence is invoked, SQLite selects +** the version that will require the least expensive encoding +** translations, if any. +** +** The CollSeq.pUser member variable is an extra parameter that passed in +** as the first argument to the UTF-8 comparison function, xCmp. +** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, +** xCmp16. +** +** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the +** collating sequence is undefined. Indices built on an undefined +** collating sequence may not be read or written. +*/ +struct CollSeq { + char *zName; /* Name of the collating sequence, UTF-8 encoded */ + u8 enc; /* Text encoding handled by xCmp() */ + u8 type; /* One of the SQLITE_COLL_... values below */ + void *pUser; /* First argument to xCmp() */ + int (*xCmp)(void*,int, const void*, int, const void*); + void (*xDel)(void*); /* Destructor for pUser */ +}; + +/* +** Allowed values of CollSeq.type: +*/ +#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ +#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ +#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ +#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ + +/* +** A sort order can be either ASC or DESC. +*/ +#define SQLITE_SO_ASC 0 /* Sort in ascending order */ +#define SQLITE_SO_DESC 1 /* Sort in ascending order */ + +/* +** Column affinity types. +** +** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and +** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve +** the speed a little by numbering the values consecutively. +** +** But rather than start with 0 or 1, we begin with 'a'. That way, +** when multiple affinity types are concatenated into a string and +** used as the P4 operand, they will be more readable. +** +** Note also that the numeric types are grouped together so that testing +** for a numeric type is a single comparison. +*/ +#define SQLITE_AFF_TEXT 'a' +#define SQLITE_AFF_NONE 'b' +#define SQLITE_AFF_NUMERIC 'c' +#define SQLITE_AFF_INTEGER 'd' +#define SQLITE_AFF_REAL 'e' + +#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) + +/* +** The SQLITE_AFF_MASK values masks off the significant bits of an +** affinity value. +*/ +#define SQLITE_AFF_MASK 0x67 + +/* +** Additional bit values that can be ORed with an affinity without +** changing the affinity. +*/ +#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ +#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ +#define SQLITE_NULLEQ 0x80 /* NULL=NULL */ + +/* +** An object of this type is created for each virtual table present in +** the database schema. +** +** If the database schema is shared, then there is one instance of this +** structure for each database connection (sqlite3*) that uses the shared +** schema. This is because each database connection requires its own unique +** instance of the sqlite3_vtab* handle used to access the virtual table +** implementation. sqlite3_vtab* handles can not be shared between +** database connections, even when the rest of the in-memory database +** schema is shared, as the implementation often stores the database +** connection handle passed to it via the xConnect() or xCreate() method +** during initialization internally. This database connection handle may +** then used by the virtual table implementation to access real tables +** within the database. So that they appear as part of the callers +** transaction, these accesses need to be made via the same database +** connection as that used to execute SQL operations on the virtual table. +** +** All VTable objects that correspond to a single table in a shared +** database schema are initially stored in a linked-list pointed to by +** the Table.pVTable member variable of the corresponding Table object. +** When an sqlite3_prepare() operation is required to access the virtual +** table, it searches the list for the VTable that corresponds to the +** database connection doing the preparing so as to use the correct +** sqlite3_vtab* handle in the compiled query. +** +** When an in-memory Table object is deleted (for example when the +** schema is being reloaded for some reason), the VTable objects are not +** deleted and the sqlite3_vtab* handles are not xDisconnect()ed +** immediately. Instead, they are moved from the Table.pVTable list to +** another linked list headed by the sqlite3.pDisconnect member of the +** corresponding sqlite3 structure. They are then deleted/xDisconnected +** next time a statement is prepared using said sqlite3*. This is done +** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. +** Refer to comments above function sqlite3VtabUnlockList() for an +** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect +** list without holding the corresponding sqlite3.mutex mutex. +** +** The memory for objects of this type is always allocated by +** sqlite3DbMalloc(), using the connection handle stored in VTable.db as +** the first argument. +*/ +struct VTable { + sqlite3 *db; /* Database connection associated with this table */ + Module *pMod; /* Pointer to module implementation */ + sqlite3_vtab *pVtab; /* Pointer to vtab instance */ + int nRef; /* Number of pointers to this structure */ + VTable *pNext; /* Next in linked list (see above) */ +}; + +/* +** Each SQL table is represented in memory by an instance of the +** following structure. +** +** Table.zName is the name of the table. The case of the original +** CREATE TABLE statement is stored, but case is not significant for +** comparisons. +** +** Table.nCol is the number of columns in this table. Table.aCol is a +** pointer to an array of Column structures, one for each column. +** +** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of +** the column that is that key. Otherwise Table.iPKey is negative. Note +** that the datatype of the PRIMARY KEY must be INTEGER for this field to +** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of +** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid +** is generated for each row of the table. TF_HasPrimaryKey is set if +** the table has any PRIMARY KEY, INTEGER or otherwise. +** +** Table.tnum is the page number for the root BTree page of the table in the +** database file. If Table.iDb is the index of the database table backend +** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that +** holds temporary tables and indices. If TF_Ephemeral is set +** then the table is stored in a file that is automatically deleted +** when the VDBE cursor to the table is closed. In this case Table.tnum +** refers VDBE cursor number that holds the table open, not to the root +** page number. Transient tables are used to hold the results of a +** sub-query that appears instead of a real table name in the FROM clause +** of a SELECT statement. +*/ +struct Table { + sqlite3 *dbMem; /* DB connection used for lookaside allocations. */ + char *zName; /* Name of the table or view */ + int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ + int nCol; /* Number of columns in this table */ + Column *aCol; /* Information about each column */ + Index *pIndex; /* List of SQL indexes on this table. */ + int tnum; /* Root BTree node for this table (see note above) */ + Select *pSelect; /* NULL for tables. Points to definition if a view. */ + u16 nRef; /* Number of pointers to this Table */ + u8 tabFlags; /* Mask of TF_* values */ + u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ + FKey *pFKey; /* Linked list of all foreign keys in this table */ + char *zColAff; /* String defining the affinity of each column */ +#ifndef SQLITE_OMIT_CHECK + Expr *pCheck; /* The AND of all CHECK constraints */ +#endif +#ifndef SQLITE_OMIT_ALTERTABLE + int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + VTable *pVTable; /* List of VTable objects. */ + int nModuleArg; /* Number of arguments to the module */ + char **azModuleArg; /* Text of all module args. [0] is module name */ +#endif + Trigger *pTrigger; /* List of triggers stored in pSchema */ + Schema *pSchema; /* Schema that contains this table */ + Table *pNextZombie; /* Next on the Parse.pZombieTab list */ +}; + +/* +** Allowed values for Tabe.tabFlags. +*/ +#define TF_Readonly 0x01 /* Read-only system table */ +#define TF_Ephemeral 0x02 /* An ephemeral table */ +#define TF_HasPrimaryKey 0x04 /* Table has a primary key */ +#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ +#define TF_Virtual 0x10 /* Is a virtual table */ +#define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ + + + +/* +** Test to see whether or not a table is a virtual table. This is +** done as a macro so that it will be optimized out when virtual +** table support is omitted from the build. +*/ +#ifndef SQLITE_OMIT_VIRTUALTABLE +# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) +# define IsHiddenColumn(X) ((X)->isHidden) +#else +# define IsVirtual(X) 0 +# define IsHiddenColumn(X) 0 +#endif + +/* +** Each foreign key constraint is an instance of the following structure. +** +** A foreign key is associated with two tables. The "from" table is +** the table that contains the REFERENCES clause that creates the foreign +** key. The "to" table is the table that is named in the REFERENCES clause. +** Consider this example: +** +** CREATE TABLE ex1( +** a INTEGER PRIMARY KEY, +** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) +** ); +** +** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". +** +** Each REFERENCES clause generates an instance of the following structure +** which is attached to the from-table. The to-table need not exist when +** the from-table is created. The existence of the to-table is not checked. +*/ +struct FKey { + Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ + FKey *pNextFrom; /* Next foreign key in pFrom */ + char *zTo; /* Name of table that the key points to (aka: Parent) */ + FKey *pNextTo; /* Next foreign key on table named zTo */ + FKey *pPrevTo; /* Previous foreign key on table named zTo */ + int nCol; /* Number of columns in this key */ + /* EV: R-30323-21917 */ + u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ + u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ + Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ + struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ + int iFrom; /* Index of column in pFrom */ + char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ + } aCol[1]; /* One entry for each of nCol column s */ +}; + +/* +** SQLite supports many different ways to resolve a constraint +** error. ROLLBACK processing means that a constraint violation +** causes the operation in process to fail and for the current transaction +** to be rolled back. ABORT processing means the operation in process +** fails and any prior changes from that one operation are backed out, +** but the transaction is not rolled back. FAIL processing means that +** the operation in progress stops and returns an error code. But prior +** changes due to the same operation are not backed out and no rollback +** occurs. IGNORE means that the particular row that caused the constraint +** error is not inserted or updated. Processing continues and no error +** is returned. REPLACE means that preexisting database rows that caused +** a UNIQUE constraint violation are removed so that the new insert or +** update can proceed. Processing continues and no error is reported. +** +** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. +** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the +** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign +** key is set to NULL. CASCADE means that a DELETE or UPDATE of the +** referenced table row is propagated into the row that holds the +** foreign key. +** +** The following symbolic values are used to record which type +** of action to take. +*/ +#define OE_None 0 /* There is no constraint to check */ +#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ +#define OE_Abort 2 /* Back out changes but do no rollback transaction */ +#define OE_Fail 3 /* Stop the operation but leave all prior changes */ +#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ +#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ + +#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ +#define OE_SetNull 7 /* Set the foreign key value to NULL */ +#define OE_SetDflt 8 /* Set the foreign key value to its default */ +#define OE_Cascade 9 /* Cascade the changes */ + +#define OE_Default 99 /* Do whatever the default action is */ + + +/* +** An instance of the following structure is passed as the first +** argument to sqlite3VdbeKeyCompare and is used to control the +** comparison of the two index keys. +*/ +struct KeyInfo { + sqlite3 *db; /* The database connection */ + u8 enc; /* Text encoding - one of the TEXT_Utf* values */ + u16 nField; /* Number of entries in aColl[] */ + u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ + CollSeq *aColl[1]; /* Collating sequence for each term of the key */ +}; + +/* +** An instance of the following structure holds information about a +** single index record that has already been parsed out into individual +** values. +** +** A record is an object that contains one or more fields of data. +** Records are used to store the content of a table row and to store +** the key of an index. A blob encoding of a record is created by +** the OP_MakeRecord opcode of the VDBE and is disassembled by the +** OP_Column opcode. +** +** This structure holds a record that has already been disassembled +** into its constituent fields. +*/ +struct UnpackedRecord { + KeyInfo *pKeyInfo; /* Collation and sort-order information */ + u16 nField; /* Number of entries in apMem[] */ + u16 flags; /* Boolean settings. UNPACKED_... below */ + i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ + Mem *aMem; /* Values */ +}; + +/* +** Allowed values of UnpackedRecord.flags +*/ +#define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ +#define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ +#define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ +#define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ +#define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ +#define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ + +/* +** Each SQL index is represented in memory by an +** instance of the following structure. +** +** The columns of the table that are to be indexed are described +** by the aiColumn[] field of this structure. For example, suppose +** we have the following table and index: +** +** CREATE TABLE Ex1(c1 int, c2 int, c3 text); +** CREATE INDEX Ex2 ON Ex1(c3,c1); +** +** In the Table structure describing Ex1, nCol==3 because there are +** three columns in the table. In the Index structure describing +** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. +** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the +** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. +** The second column to be indexed (c1) has an index of 0 in +** Ex1.aCol[], hence Ex2.aiColumn[1]==0. +** +** The Index.onError field determines whether or not the indexed columns +** must be unique and what to do if they are not. When Index.onError=OE_None, +** it means this is not a unique index. Otherwise it is a unique index +** and the value of Index.onError indicate the which conflict resolution +** algorithm to employ whenever an attempt is made to insert a non-unique +** element. +*/ +struct Index { + char *zName; /* Name of this index */ + int nColumn; /* Number of columns in the table used by this index */ + int *aiColumn; /* Which columns are used by this index. 1st is 0 */ + unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ + Table *pTable; /* The SQL table being indexed */ + int tnum; /* Page containing root of this index in database file */ + u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ + char *zColAff; /* String defining the affinity of each column */ + Index *pNext; /* The next index associated with the same table */ + Schema *pSchema; /* Schema containing this index */ + u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ + char **azColl; /* Array of collation sequence names for index */ + IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ +}; + +/* +** Each sample stored in the sqlite_stat2 table is represented in memory +** using a structure of this type. +*/ +struct IndexSample { + union { + char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ + double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ + } u; + u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ + u8 nByte; /* Size in byte of text or blob. */ +}; + +/* +** Each token coming out of the lexer is an instance of +** this structure. Tokens are also used as part of an expression. +** +** Note if Token.z==0 then Token.dyn and Token.n are undefined and +** may contain random values. Do not make any assumptions about Token.dyn +** and Token.n when Token.z==0. +*/ +struct Token { + const char *z; /* Text of the token. Not NULL-terminated! */ + unsigned int n; /* Number of characters in this token */ +}; + +/* +** An instance of this structure contains information needed to generate +** code for a SELECT that contains aggregate functions. +** +** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a +** pointer to this structure. The Expr.iColumn field is the index in +** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate +** code for that node. +** +** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the +** original Select structure that describes the SELECT statement. These +** fields do not need to be freed when deallocating the AggInfo structure. +*/ +struct AggInfo { + u8 directMode; /* Direct rendering mode means take data directly + ** from source tables rather than from accumulators */ + u8 useSortingIdx; /* In direct mode, reference the sorting index rather + ** than the source table */ + int sortingIdx; /* Cursor number of the sorting index */ + ExprList *pGroupBy; /* The group by clause */ + int nSortingColumn; /* Number of columns in the sorting index */ + struct AggInfo_col { /* For each column used in source tables */ + Table *pTab; /* Source table */ + int iTable; /* Cursor number of the source table */ + int iColumn; /* Column number within the source table */ + int iSorterColumn; /* Column number in the sorting index */ + int iMem; /* Memory location that acts as accumulator */ + Expr *pExpr; /* The original expression */ + } *aCol; + int nColumn; /* Number of used entries in aCol[] */ + int nColumnAlloc; /* Number of slots allocated for aCol[] */ + int nAccumulator; /* Number of columns that show through to the output. + ** Additional columns are used only as parameters to + ** aggregate functions */ + struct AggInfo_func { /* For each aggregate function */ + Expr *pExpr; /* Expression encoding the function */ + FuncDef *pFunc; /* The aggregate function implementation */ + int iMem; /* Memory location that acts as accumulator */ + int iDistinct; /* Ephemeral table used to enforce DISTINCT */ + } *aFunc; + int nFunc; /* Number of entries in aFunc[] */ + int nFuncAlloc; /* Number of slots allocated for aFunc[] */ +}; + +/* +** The datatype ynVar is a signed integer, either 16-bit or 32-bit. +** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater +** than 32767 we have to make it 32-bit. 16-bit is preferred because +** it uses less memory in the Expr object, which is a big memory user +** in systems with lots of prepared statements. And few applications +** need more than about 10 or 20 variables. But some extreme users want +** to have prepared statements with over 32767 variables, and for them +** the option is available (at compile-time). +*/ +#if SQLITE_MAX_VARIABLE_NUMBER<=32767 +typedef i16 ynVar; +#else +typedef int ynVar; +#endif + +/* +** Each node of an expression in the parse tree is an instance +** of this structure. +** +** Expr.op is the opcode. The integer parser token codes are reused +** as opcodes here. For example, the parser defines TK_GE to be an integer +** code representing the ">=" operator. This same integer code is reused +** to represent the greater-than-or-equal-to operator in the expression +** tree. +** +** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, +** or TK_STRING), then Expr.token contains the text of the SQL literal. If +** the expression is a variable (TK_VARIABLE), then Expr.token contains the +** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), +** then Expr.token contains the name of the function. +** +** Expr.pRight and Expr.pLeft are the left and right subexpressions of a +** binary operator. Either or both may be NULL. +** +** Expr.x.pList is a list of arguments if the expression is an SQL function, +** a CASE expression or an IN expression of the form " IN (, ...)". +** Expr.x.pSelect is used if the expression is a sub-select or an expression of +** the form " IN (SELECT ...)". If the EP_xIsSelect bit is set in the +** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is +** valid. +** +** An expression of the form ID or ID.ID refers to a column in a table. +** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is +** the integer cursor number of a VDBE cursor pointing to that table and +** Expr.iColumn is the column number for the specific column. If the +** expression is used as a result in an aggregate SELECT, then the +** value is also stored in the Expr.iAgg column in the aggregate so that +** it can be accessed after all aggregates are computed. +** +** If the expression is an unbound variable marker (a question mark +** character '?' in the original SQL) then the Expr.iTable holds the index +** number for that variable. +** +** If the expression is a subquery then Expr.iColumn holds an integer +** register number containing the result of the subquery. If the +** subquery gives a constant result, then iTable is -1. If the subquery +** gives a different answer at different times during statement processing +** then iTable is the address of a subroutine that computes the subquery. +** +** If the Expr is of type OP_Column, and the table it is selecting from +** is a disk table or the "old.*" pseudo-table, then pTab points to the +** corresponding table definition. +** +** ALLOCATION NOTES: +** +** Expr objects can use a lot of memory space in database schema. To +** help reduce memory requirements, sometimes an Expr object will be +** truncated. And to reduce the number of memory allocations, sometimes +** two or more Expr objects will be stored in a single memory allocation, +** together with Expr.zToken strings. +** +** If the EP_Reduced and EP_TokenOnly flags are set when +** an Expr object is truncated. When EP_Reduced is set, then all +** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees +** are contained within the same memory allocation. Note, however, that +** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately +** allocated, regardless of whether or not EP_Reduced is set. +*/ +struct Expr { + u8 op; /* Operation performed by this node */ + char affinity; /* The affinity of the column or 0 if not a column */ + u16 flags; /* Various flags. EP_* See below */ + union { + char *zToken; /* Token value. Zero terminated and dequoted */ + int iValue; /* Integer value if EP_IntValue */ + } u; + + /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no + ** space is allocated for the fields below this point. An attempt to + ** access them will result in a segfault or malfunction. + *********************************************************************/ + + Expr *pLeft; /* Left subnode */ + Expr *pRight; /* Right subnode */ + union { + ExprList *pList; /* Function arguments or in " IN ( IN (