]> Creatis software - CreaPhase.git/blobdiff - octave_packages/m/sparse/pcg.m
update packages
[CreaPhase.git] / octave_packages / m / sparse / pcg.m
diff --git a/octave_packages/m/sparse/pcg.m b/octave_packages/m/sparse/pcg.m
new file mode 100644 (file)
index 0000000..da2f49e
--- /dev/null
@@ -0,0 +1,532 @@
+## Copyright (C) 2004-2012 Piotr Krzyzanowski
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 3 of the License, or (at
+## your option) any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, see
+## <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn  {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{})
+## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{})
+##
+## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}}
+## by means of the Preconditioned Conjugate Gradient iterative
+## method.  The input arguments are
+##
+## @itemize
+## @item
+## @var{A} can be either a square (preferably sparse) matrix or a
+## function handle, inline function or string containing the name
+## of a function which computes @code{@var{A} * @var{x}}.  In principle
+## @var{A} should be symmetric and positive definite; if @code{pcg}
+## finds @var{A} to not be positive definite, you will get a warning
+## message and the @var{flag} output parameter will be set.
+##
+## @item
+## @var{b} is the right hand side vector.
+##
+## @item
+## @var{tol} is the required relative tolerance for the residual error,
+## @code{@var{b} - @var{A} * @var{x}}.  The iteration stops if
+## @code{norm (@var{b} - @var{A} * @var{x}) <=
+##       @var{tol} * norm (@var{b} - @var{A} * @var{x0})}.
+## If @var{tol} is empty or is omitted, the function sets
+## @code{@var{tol} = 1e-6} by default.
+##
+## @item
+## @var{maxit} is the maximum allowable number of iterations; if
+## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less
+## arguments, a default value equal to 20 is used.
+##
+## @item
+## @var{m} = @var{m1} * @var{m2} is the (left) preconditioning matrix, so that
+## the iteration is (theoretically) equivalent to solving by @code{pcg}
+## @code{@var{P} *
+## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{A}}.
+## Note that a proper choice of the preconditioner may dramatically
+## improve the overall performance of the method.  Instead of matrices
+## @var{m1} and @var{m2}, the user may pass two functions which return
+## the results of applying the inverse of @var{m1} and @var{m2} to
+## a vector (usually this is the preferred way of using the preconditioner).
+## If @code{[]} is supplied for @var{m1}, or @var{m1} is omitted, no
+## preconditioning is applied.  If @var{m2} is omitted, @var{m} = @var{m1}
+## will be used as preconditioner.
+##
+## @item
+## @var{x0} is the initial guess.  If @var{x0} is empty or omitted, the
+## function sets @var{x0} to a zero vector by default.
+## @end itemize
+##
+## The arguments which follow @var{x0} are treated as parameters, and
+## passed in a proper way to any of the functions (@var{A} or @var{m})
+## which are passed to @code{pcg}.  See the examples below for further
+## details.  The output arguments are
+##
+## @itemize
+## @item
+## @var{x} is the computed approximation to the solution of
+## @code{@var{A} * @var{x} = @var{b}}.
+##
+## @item
+## @var{flag} reports on the convergence.  @code{@var{flag} = 0} means
+## the solution converged and the tolerance criterion given by @var{tol}
+## is satisfied.  @code{@var{flag} = 1} means that the @var{maxit} limit
+## for the iteration count was reached.  @code{@var{flag} = 3} reports that
+## the (preconditioned) matrix was found not positive definite.
+##
+## @item
+## @var{relres} is the ratio of the final residual to its initial value,
+## measured in the Euclidean norm.
+##
+## @item
+## @var{iter} is the actual number of iterations performed.
+##
+## @item
+## @var{resvec} describes the convergence history of the method.
+## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and
+## @code{@var{resvec} (i,2)} is the preconditioned residual norm,
+## after the (@var{i}-1)-th iteration, @code{@var{i} =
+## 1, 2, @dots{}, @var{iter}+1}.  The preconditioned residual norm
+## is defined as
+## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where
+## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
+## description of @var{m}.  If @var{eigest} is not required, only
+## @code{@var{resvec} (:,1)} is returned.
+##
+## @item
+## @var{eigest} returns the estimate for the smallest @code{@var{eigest}
+## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the
+## preconditioned matrix @code{@var{P} = @var{m} \ @var{A}}.  In
+## particular, if no preconditioning is used, the estimates for the
+## extreme eigenvalues of @var{A} are returned.  @code{@var{eigest} (1)}
+## is an overestimate and @code{@var{eigest} (2)} is an underestimate,
+## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound
+## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should
+## theoretically be equal to the actual value of the condition number.
+## The method which computes @var{eigest} works only for symmetric positive
+## definite @var{A} and @var{m}, and the user is responsible for
+## verifying this assumption.
+## @end itemize
+##
+## Let us consider a trivial problem with a diagonal matrix (we exploit the
+## sparsity of A)
+##
+## @example
+## @group
+## n = 10;
+## A = diag (sparse (1:n));
+## b = rand (n, 1);
+## [l, u, p, q] = luinc (A, 1.e-3);
+## @end group
+## @end example
+##
+## @sc{Example 1:} Simplest use of @code{pcg}
+##
+## @example
+## x = pcg (A,b)
+## @end example
+##
+## @sc{Example 2:} @code{pcg} with a function which computes
+## @code{@var{A} * @var{x}}
+##
+## @example
+## @group
+## function y = apply_a (x)
+##   y = [1:N]' .* x;
+## endfunction
+##
+## x = pcg ("apply_a", b)
+## @end group
+## @end example
+##
+## @sc{Example 3:} @code{pcg} with a preconditioner: @var{l} * @var{u}
+##
+## @example
+## x = pcg (A, b, 1.e-6, 500, l*u)
+## @end example
+##
+## @sc{Example 4:} @code{pcg} with a preconditioner: @var{l} * @var{u}.
+## Faster than @sc{Example 3} since lower and upper triangular matrices
+## are easier to invert
+##
+## @example
+## x = pcg (A, b, 1.e-6, 500, l, u)
+## @end example
+##
+## @sc{Example 5:} Preconditioned iteration, with full diagnostics.  The
+## preconditioner (quite strange, because even the original matrix
+## @var{A} is trivial) is defined as a function
+##
+## @example
+## @group
+## function y = apply_m (x)
+##   k = floor (length (x) - 2);
+##   y = x;
+##   y(1:k) = x(1:k) ./ [1:k]';
+## endfunction
+##
+## [x, flag, relres, iter, resvec, eigest] = ...
+##                    pcg (A, b, [], [], "apply_m");
+## semilogy (1:iter+1, resvec);
+## @end group
+## @end example
+##
+## @sc{Example 6:} Finally, a preconditioner which depends on a
+## parameter @var{k}.
+##
+## @example
+## @group
+## function y = apply_M (x, varargin)
+##   K = varargin@{1@};
+##   y = x;
+##   y(1:K) = x(1:K) ./ [1:K]';
+## endfunction
+##
+## [x, flag, relres, iter, resvec, eigest] = ...
+##      pcg (A, b, [], [], "apply_m", [], [], 3)
+## @end group
+## @end example
+##
+## References:
+##
+## @enumerate
+## @item
+## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations},
+## SIAM, 1995. (the base PCG algorithm)
+##
+## @item
+## Y. Saad, @cite{Iterative Methods for Sparse Linear Systems}, PWS 1996.
+## (condition number estimate from PCG) Revised version of this book is
+## available online at @url{http://www-users.cs.umn.edu/~saad/books.html}
+## @end enumerate
+##
+## @seealso{sparse, pcr}
+## @end deftypefn
+
+## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl>
+## Modified by: Vittoria Rezzonico <vittoria.rezzonico@epfl.ch>
+##  - Add the ability to provide the pre-conditioner as two separate matrices
+
+function [x, flag, relres, iter, resvec, eigest] = pcg (A, b, tol, maxit, m1, m2, x0, varargin)
+
+  ## M = M1*M2
+
+  if (nargin < 7 || isempty (x0))
+    x = zeros (size (b));
+  else
+    x = x0;
+  endif
+
+  if (nargin < 5 || isempty (m1))
+     exist_m1 = 0;
+  else
+     exist_m1 = 1;
+  endif
+
+  if (nargin < 6 || isempty (m2))
+     exist_m2 = 0;
+  else
+     exist_m2 = 1;
+  endif
+
+  if (nargin < 4 || isempty (maxit))
+    maxit = min (size (b, 1), 20);
+  endif
+
+  maxit += 2;
+
+  if (nargin < 3 || isempty (tol))
+    tol = 1e-6;
+  endif
+
+  preconditioned_residual_out = false;
+  if (nargout > 5)
+    T = zeros (maxit, maxit);
+    preconditioned_residual_out = true;
+  endif
+
+  ## Assume A is positive definite.
+  matrix_positive_definite = true;
+
+  p = zeros (size (b));
+  oldtau = 1;
+  if (isnumeric (A))
+    ## A is a matrix.
+    r = b - A*x;
+  else
+    ## A should be a function.
+    r = b - feval (A, x, varargin{:});
+  endif
+
+  resvec(1,1) = norm (r);
+  alpha = 1;
+  iter = 2;
+
+  while (resvec (iter-1,1) > tol * resvec (1,1) && iter < maxit)
+    if (exist_m1)
+      if(isnumeric (m1))
+        y = m1 \ r;
+      else
+        y = feval (m1, r, varargin{:});
+      endif
+    else
+      y = r;
+    endif
+    if (exist_m2)
+      if (isnumeric (m2))
+        z = m2 \ y;
+      else
+        z = feval (m2, y, varargin{:});
+      endif
+    else
+      z = y;
+    endif
+    tau = z' * r;
+    resvec (iter-1,2) = sqrt (tau);
+    beta = tau / oldtau;
+    oldtau = tau;
+    p = z + beta * p;
+    if (isnumeric (A))
+      ## A is a matrix.
+      w = A * p;
+    else
+      ## A should be a function.
+      w = feval (A, p, varargin{:});
+    endif
+    ## Needed only for eigest.
+    oldalpha = alpha;
+    alpha = tau / (p'*w);
+    if (alpha <= 0.0)
+      ## Negative matrix.
+      matrix_positive_definite = false;
+    endif
+    x += alpha * p;
+    r -= alpha * w;
+    if (nargout > 5 && iter > 2)
+      T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
+          [1 sqrt(beta); sqrt(beta) beta]./oldalpha;
+      ## EVS = eig(T(2:iter-1,2:iter-1));
+      ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter);
+    endif
+    resvec (iter,1) = norm (r);
+    iter++;
+  endwhile
+
+  if (nargout > 5)
+    if (matrix_positive_definite)
+      if (iter > 3)
+        T = T(2:iter-2,2:iter-2);
+        l = eig (T);
+        eigest = [min(l), max(l)];
+        ## fprintf (stderr, "pcg condest: %g\n", eigest(2)/eigest(1));
+      else
+        eigest = [NaN, NaN];
+        warning ("pcg: eigenvalue estimate failed: iteration converged too fast");
+      endif
+    else
+      eigest = [NaN, NaN];
+    endif
+
+    ## Apply the preconditioner once more and finish with the precond
+    ## residual.
+    if (exist_m1)
+      if (isnumeric (m1))
+        y = m1 \ r;
+      else
+        y = feval (m1, r, varargin{:});
+      endif
+    else
+      y = r;
+    endif
+    if (exist_m2)
+      if (isnumeric (m2))
+        z = m2 \ y;
+      else
+        z = feval (m2, y, varargin{:});
+      endif
+    else
+      z = y;
+    endif
+
+    resvec (iter-1,2) = sqrt (r' * z);
+  else
+    resvec = resvec(:,1);
+  endif
+
+  flag = 0;
+  relres = resvec (iter-1,1) ./ resvec(1,1);
+  iter -= 2;
+  if (iter >= maxit - 2)
+    flag = 1;
+    if (nargout < 2)
+      warning ("pcg: maximum number of iterations (%d) reached\n", iter);
+      warning ("the initial residual norm was reduced %g times.\n", ...
+               1.0 / relres);
+    endif
+  elseif (nargout < 2)
+    fprintf (stderr, "pcg: converged in %d iterations. ", iter);
+    fprintf (stderr, "the initial residual norm was reduced %g times.\n",...
+             1.0/relres);
+  endif
+
+  if (! matrix_positive_definite)
+    flag = 3;
+    if (nargout < 2)
+      warning ("pcg: matrix not positive definite?\n");
+    endif
+  endif
+endfunction
+
+%!demo
+%!
+%!      # Simplest usage of pcg (see also 'help pcg')
+%!
+%!      N = 10;
+%!      A = diag ([1:N]); b = rand (N, 1); y =  A \ b; #y is the true solution
+%!      x = pcg (A, b);
+%!      printf('The solution relative error is %g\n', norm (x - y) / norm (y));
+%!
+%!      # You shouldn't be afraid if pcg issues some warning messages in this
+%!      # example: watch out in the second example, why it takes N iterations
+%!      # of pcg to converge to (a very accurate, by the way) solution
+%!demo
+%!
+%!      # Full output from pcg, except for the eigenvalue estimates
+%!      # We use this output to plot the convergence history
+%!
+%!      N = 10;
+%!      A = diag ([1:N]); b = rand (N, 1); X =  A \ b; #X is the true solution
+%!      [x, flag, relres, iter, resvec] = pcg (A, b);
+%!      printf('The solution relative error is %g\n', norm (x - X) / norm (X));
+%!      title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)');
+%!      semilogy([0:iter], resvec / resvec(1),'o-g');
+%!      legend('relative residual');
+%!demo
+%!
+%!      # Full output from pcg, including the eigenvalue estimates
+%!      # Hilbert matrix is extremely ill conditioned, so pcg WILL have problems
+%!
+%!      N = 10;
+%!      A = hilb (N); b = rand (N, 1); X = A \ b; #X is the true solution
+%!      [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], 200);
+%!      printf('The solution relative error is %g\n', norm (x - X) / norm (X));
+%!      printf('Condition number estimate is %g\n', eigest(2) / eigest (1));
+%!      printf('Actual condition number is   %g\n', cond (A));
+%!      title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)');
+%!      semilogy([0:iter], resvec,['o-g';'+-r']);
+%!      legend('absolute residual','absolute preconditioned residual');
+%!demo
+%!
+%!      # Full output from pcg, including the eigenvalue estimates
+%!      # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2)
+%!      # and that's the reasone we need some preconditioner; here we take
+%!      # a very simple and not powerful Jacobi preconditioner,
+%!      # which is the diagonal of A
+%!
+%!      N = 100;
+%!      A = zeros (N, N);
+%!      for i=1 : N - 1 # form 1-D Laplacian matrix
+%!              A (i:i+1, i:i+1) = [2 -1; -1 2];
+%!      endfor
+%!      b = rand (N, 1); X = A \ b; #X is the true solution
+%!      maxit = 80;
+%!      printf('System condition number is %g\n', cond (A));
+%!      # No preconditioner: the convergence is very slow!
+%!
+%!      [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit);
+%!      printf('System condition number estimate is %g\n', eigest(2) / eigest(1));
+%!      title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)');
+%!      semilogy([0:iter], resvec(:,1), 'o-g');
+%!      legend('NO preconditioning: absolute residual');
+%!
+%!      pause(1);
+%!      # Test Jacobi preconditioner: it will not help much!!!
+%!
+%!      M = diag (diag (A)); # Jacobi preconditioner
+%!      [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M);
+%!      printf('JACOBI preconditioned system condition number estimate is %g\n', eigest(2) / eigest(1));
+%!      hold on;
+%!      semilogy([0:iter], resvec(:,1), 'o-r');
+%!      legend('NO preconditioning: absolute residual', ...
+%!             'JACOBI preconditioner: absolute residual');
+%!
+%!      pause(1);
+%!      # Test nonoverlapping block Jacobi preconditioner: it will help much!
+%!
+%!      M = zeros (N, N); k = 4;
+%!      for i = 1 : k : N # form 1-D Laplacian matrix
+%!              M (i:i+k-1, i:i+k-1) = A (i:i+k-1, i:i+k-1);
+%!      endfor
+%!      [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M);
+%!      printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n', eigest(2) / eigest(1));
+%!      semilogy ([0:iter], resvec(:,1),'o-b');
+%!      legend('NO preconditioning: absolute residual', ...
+%!             'JACOBI preconditioner: absolute residual', ...
+%!             'BLOCK JACOBI preconditioner: absolute residual');
+%!      hold off;
+%!test
+%!
+%!      #solve small diagonal system
+%!
+%!      N = 10;
+%!      A = diag ([1:N]); b = rand (N, 1); X = A \ b; #X is the true solution
+%!      [x, flag] = pcg (A, b, [], N+1);
+%!      assert(norm (x - X) / norm (X), 0, 1e-10);
+%!      assert(flag, 0);
+%!
+%!test
+%!
+%!      #solve small indefinite diagonal system
+%!      #despite A is indefinite, the iteration continues and converges
+%!      #indefiniteness of A is detected
+%!
+%!      N = 10;
+%!      A = diag([1:N] .* (-ones(1, N) .^ 2)); b = rand (N, 1); X = A \ b; #X is the true solution
+%!      [x, flag] = pcg (A, b, [], N+1);
+%!      assert(norm (x - X) / norm (X), 0, 1e-10);
+%!      assert(flag, 3);
+%!
+%!test
+%!
+%!      #solve tridiagonal system, do not converge in default 20 iterations
+%!
+%!      N = 100;
+%!      A = zeros (N, N);
+%!      for i = 1 : N - 1 # form 1-D Laplacian matrix
+%!              A (i:i+1, i:i+1) = [2 -1; -1 2];
+%!      endfor
+%!      b = ones (N, 1); X = A \ b; #X is the true solution
+%!      [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12);
+%!      assert(flag);
+%!      assert(relres > 1.0);
+%!      assert(iter, 20); #should perform max allowable default number of iterations
+%!
+%!test
+%!
+%!      #solve tridiagonal system with 'prefect' preconditioner
+%!      #converges in one iteration, so the eigest does not work
+%!      #and issues a warning
+%!
+%!      N = 100;
+%!      A = zeros (N, N);
+%!      for i = 1 : N - 1 # form 1-D Laplacian matrix
+%!              A (i:i+1, i:i+1) = [2 -1; -1 2];
+%!      endfor
+%!      b = ones (N, 1); X = A \ b; #X is the true solution
+%!      [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b);
+%!      assert(norm (x - X) / norm (X), 0, 1e-6);
+%!      assert(flag, 0);
+%!      assert(iter, 1); #should converge in one iteration
+%!      assert(isnan (eigest), isnan ([NaN, NaN]));
+%!